Automatic I nduction of Domain-related I nfor mation:
L earning Descriptors Type Domains

Stefano Ferilli and Floriana Esposito and TeresaM. A. Basile and Nicola Di Mauro !

Abstract.
tion to be supported by various kinds of meta-informatiaovizling
such information is a critical, difficult and error-pronetiaity. This
paper proposes an algorithm to automatically identify yfpem ob-
servations, and studies its performance and robustness.

1 Introduction

Learning in complex contexts often requires pure indudiidme sup-
ported by a variety of techniques that can cope with diffeaspects
of the learning task. In the current practice, it is in chasféhe hu-
man expert to specify all the ‘added-value’ information chest by
such techniques for being applicable. Providing it is a \diffjcult
task, that requires a deep knowledge of the application dgraad
is in any case an error-prone activity, since omissions ammisemay
take place. These considerations would make it desiralilevelop
procedures that can automatically generate such infoomatarting
from the same observations that are input to the learninggs

The next section presents a technique to automatically thie
description language. Then, Section 3 tests the propogatagh,
even in the case of incomplete input information.

2 Inducing Descriptors Type Domains

An interesting issues is the identification of whgpesare used in
the description language and their relatiednains When using First
Order Logic as a representation language, unary predicgpessent
possible values for properties. Hence, discovering the tigmains
for the properties in the language can be cast as the seargtofps
of unary predicates that semantically refer to the samibaté. Var-
ious learning systems in the literature (e.g., [12], [3L][410], [4],
[6] and [7]) can exploit meta-information of this kind to el the
search space and obtain more efficiency. Some attemptscmatit
cally infer such information have already been carried 6utHlow-
ever, theories learned by many systems are constant-fideglimw
only variables as terms.

Example 1. Given a set of examples and descriptions in which the

set of unary predicates in the description language{lsigh, large

white, low, small blue red yellow}, the system should understand

that the values they represent define three domains refeoretif-
ferent types{white, blue red, yellow} (color), {small large} (size),
and {high, low} (heigh.

In the following, we will assume that: all possible valueshoh-
numeric properties are expressed by means of unary predjaad
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Learning in complex contexts often requires pure induc-unary predicate expresses a value that belongs to many; types

property is expressed by just the presence or absence akspond-
ing predicate; all properties are applicable to any objeat bccurs
in the descriptions.

The whole strategy is summarized in Algorithm 1. Since dife
values for the same attribute are mutually exclusive, amneary
step cosists in testing for occurrence in the observatitribeapos-
sible pairs of unary predicates .

Then, sinceany value in a given domain cannot co-occur in one
object withanyother value in the same domain, the problem becomes
identifying groups of unary predicates whose elementscatgple-
wisemutually exclusive. In particular, we are interested in imeat
sets only. By mapping the problem onto a corresponding oitleein
graph context, we build an undirected grafgh whose nodes are
unary predicates in the description language, and wherdgaman-
nects two nodes if and only if they are mutually exclusiveslich
a setting, the maximal sets we are looking for correspond| tihe
maximalcliques (i.e., cliques that cannot be further extendeddn

Now, there can be 'spurious’ groups of predicates with ceupl
wise mutually exclusive elements even if they do not refex same
attribute (e.g., a line is never too tall), but, in the end solution
will include only groups that have no element in common. Agai
this problem can be solved in the graph context by buildingradti-
rected grapltz in which nodes are groups identified in the previous
step as cliques of grapi., and an edge connects two nodes if and
only if they are disjoint sets. Now, the solution will be made by
maximal groups of disjoint subsets, each of which corredpdn a
maximal clique inG .

The clique inG4 will probably not be unique, in which case one
must have a clue for choosing the right one. The intuitionthis
case, is that any ‘wrong’ clique, in order to fulfill the mukdésjunc-
tion requirement, will have overall a number of values tlzaleiss
than that of the correct solution, since the correct sotusioould be
the only one containing all the possible values for eachentyrep-
resented by a group), and hence the union of predicates af &l
components should be equal to the whole set of values fooaflip
ble attributes. In other words, the solution is actuallyaatition of
the set of unary predicates.

3 Experimental Results

The proposed method was implemented in SICStus Prolog, and
tested on various domains, covering all the possible casagad-
able observations and target types to be recognized.

The Scientific Papers dataset [5] is based on a representatio
guage made up of predicates with various arities, of whicaryin
predicates represent values belonging to many differemadlts



Algorithm 1 Identification of type domains
Require: Description languagé
U:={p € L|punary
E={(p,q) eUxU| AX:p(X)Aq(X)}
G.=(UFE)
S:={C CU|CcliqueinG.}
F={(p,q) € SxS|pnq=0}
Gq = (S, F)
T:={C C S| C cliqueinGg}
returnargmaz o (| Utiet ti])

(generalcase). It includes 112 scientific papers, belonging to 4 di
ferent classes. The procedure found all the correct typadthv(7
values), Content (6 values), Vertical position (3 valué¢®)rizontal
position (3 values), Height (10 values).

The Family Relationships dataset [2] refers to a descripizm-
guage made up of predicates with various arities that desra
family tree, all whose unary predicatefdmale, malé) belong to
the same type (Sex), successfully retrieved by the algarith

The Tic Tac Toe dataset [1] description language is made up
unary predicates only, representing values of differepésy It con-
tains all possible instances of final game configurationsh eaport-
ing the status (blank, X, or O) of all 9 positions. The systemiectly
recognized these 9 types with the corresponding 3-valuethido

Lastly, the Congressional Votes [8] dataset describes 4@% C
gressmen as being democrats or republicans accordingitwties

on 16 issues by means of 32 predicates, each representirfg-the

vorable or opposite vote on one of the 16 issues. It is paatityu
interesting because a certain amount of noise is presehieimlée-
scriptions, in the form of unknown (omitted) votes. Nevet#ss, the
algorithm is able to correctly infer all the 16 types, eaclhwiis 2

descriptors (corresponding to the yes/no options).

To evaluate the effectiveness of the proposed algorithmeisgmce
of a small amount of information, we focused on the Scienkfe
pers dataset, because it is the most complex among thosdemts
Various experiments were run, in which noise was progregsin-
troduced in the dataset descriptions. For each fixed amdurtdise
to be introduced, 10 random corruptions of the dataset were p
formed, on which the proposed algorithm was run. Then, thebks
types were checked and categorized in one of the following-ca
gories (listed by decreasing desirabilitgorrect incomplete(i.e.,

missing some types or some values in some type domains, thit wi

out mixing values belonging to different typesnpossible(when
the algorithm autonomously recognized that the availaffierma-
tion was too loose for getting to a correct solution), amdng (when
at least one of the identified types contained in its domalnesa
actually belongs to different types).

A first experiment in this direction aimed at assessing hawgise
tive the algorithm is to the amount of observations provitted. In
this case, the dataset corruption consisted in progrdgslieinat-
ing observations (examples) from it (remember that theaingize

was 112). The amount of corruption ranged between 10% and 90%0]

of the entire dataset. It is interesting to note that therétlym never
generated undesirable (i.e., impossible or wrong) typeailosn Ac-
tually, up to 50% of the dataset it always gave correct andptera
answers. After that threshold, completeness started asioge but

even when 90% of the observations was dropped (i.e., onlyat2 p

per descriptions were available) in 2 cases it succeededdim§ the
correct and complete types. This should allow one to statethe
system is effective also when provided with very few obstows.

Then, the next question was how much noise could be present in
the available knowledge in order for the system not to beeadsd
in its task. For this purpose, all the available observativere cor-
rupted by eliminating from them a progressively larger anioaf
information, ranging from 10% to 60%. The experimental outes
suggest that the algorithm is more sensitive to partial rijgtsens
than it was to a small number of observations. Indeed, indage
complete and correct types are induced only up to 20% of ptiam,
while accepting also incomplete types is fine up to 30%. Arnywa
also after that threshold, the sum of desirable casesdapgct and
incomplete ones) far outperforms the number of undesirabéss.
Only when 60% of each description in the dataset is dropped th
¢_.number of wrong inductions becomes predominant, but iatirgly
it does not exceed half of the trials. This behaviour can Iptadixed
because the proposed algorithm heavily relies on co-oecoer of
values for inducing the type domains. Thus, eliminating lehab-
servations, but leaving complete the remaining ones, iathnstill
preserves many co-occurrences. On the contrary, dropmrtgps
of each observation is likely to introduce false (supposechmpat-
ibilities among values that actually belong to differerpgesg.

of
4 Conclusions

Many learning systems in the literature exploit knowledgeid the
types used in the description language and their relatecanfento
improve their performance. This paper proposed an alguarithau-
tomatically identify this kind of meta-information from sérvations.
Experimental evaluation in domains with different chagaistics re-
veals encouraging performance and its robustness.
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