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1 Introduction
Environmental Knowledge Representation is concerned with repre-
senting and reasoning about the environments within which intelli-
gent agents operate. To understand an environment is to have com-
mand of a structured model in which important features are high-
lighted and their mutual interrelations made available for inference.
Such knowledge is largely qualitative: to understand an environment
it is neither necessary nor sufficient to have detailed knowledge of the
values of numerical variables at precisely specified spatial locations.

We are often concerned with spread out characteristics of the en-
vironment: built-up areas, grassland, hill country, flooded areas, for-
est, uneven ground, road surfaces, etc. In the context of AI, such
knowledge may be represented using spatial fluents, i.e., functions
from locations to values. A simple example [2] is the presence of a
certain disease; this is represented by a proposition-like entity a such
that, in a given model, a holds at some locations, and ¬a at others.

Environmental knowledge is inevitably incomplete, and inferences
from what is known to what is not are generally defeasible, e.g., in-
terpolation and extrapolation, both forms of non-monotonic reason-
ing. The main regulating principles for such reasoning in the spatial
domain are continuity and persistence, applying to continuous and
discrete phenomena respectively. The general problem arises when
we know the values of a fluent at certain points and we want to infer
values at other points. For continuous fluents over continuous space,
well-researched statistical techniques exist. But for qualitative envi-
ronment understanding, where the fluents are typically discrete, other
methods are needed; such methods are the subject of this paper.

2 Interpolation for fully discrete spatial fluents
A fully discrete spatial fluent f maps spatial locations into a set
V = {v1, . . . , vn} of qualitative values, where mutual adjacency is
unconstrained, i.e., for any vi, vj ∈ V , a region over which f = vi

may be adjacent to one over which f = vj . For non-monotonic rea-
soning over such a fluent, we use spatial persistence [2, 1, 3], as
follows. Suppose we know f(l) = v, and let l′ be some other loca-
tion. Then unless we know of some barrier to propagation of value v

between l and l′, we assume f(l′) = v by default. For an example of
such a barrier [2], let f be the presence or absence of some disease
spread by non-swimming animals. Suppose we know the disease ex-
ists at l, but not whether it is present at l′. If there is a river between
l and l′, the default inference (that it is present at l′) will be blocked.

As just described, spatial persistence leads to conflicts. Suppose
we know that f(l) = v and f(l′) = v′ 6= v, but the value of f at l′′
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is unknown. If there are no barriers, then applying persistence to both
v and v′ implies, absurdly, that f takes both values at l′′. To prevent
this, we must refine the spatial persistence procedure. One method,
suggested by [2], is the following ‘projection’ method: assign to l

whichever value of f holds at the nearest location to l at which its
value is known.
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Figure 1. Voronoi diagram for three points arising from
persistence-by-projection procedure.

This procedure assumes that different values of f are equally prob-
able, which may be unrealistic. Shanahan [4] considers spatial occu-
pancy in the context of reasoning about moving objects. He intro-
duces a default principle that unless there is reason to believe other-
wise, a point in space can be assumed to be unoccupied. The fluent
in question has values ‘occupied’ and ‘unoccupied’, and Shanahan’s
principle is tantamount to privileging the latter over the former. Spa-
tial persistence, as described above, is inappropriate here.

We modify simple projection as follows: to privilege value v over
v′ with factor k > 1, apply projection as before, except that when
comparing distances from points at which f = v with distances from
points at which f = v′, first multiply the former by k. In R

2, suppose
f(l) = v and f(l′) = v′. With the unmodified principle, the dividing
line between points assigned value v and points assigned value v′ is
the perpendicular bisector ll′. With the modified projection principle,
it is the locus of points whose distance from l is k times their distance
from l′, i.e., a circle which encloses l′ but excludes l. Inside the circle
we assume f = v′, and everywhere else, f = v. The effect is to make
v more ‘likely’ than v′, by an amount dependent on k.

As a simple illustration, consider figures 1 and 2. In each figure the
three points labelled G, T, and W, stand for Grass, Trees, and Water
respectively. In Fig. 1, we apply the simple projection principle. The



space is divided into sectors according to the relative distances of the
three landmarks—the sector labelled TGW consists of those points
for which the nearest landmark is T, the second nearest G, and the
furthest W, and so on. The simple projection principle assigns to the
whole of each sector the fluent that comes first in its label, so that
WGT and WTG together constitute the W sector, consisting of those
points for which the nearest landmark is W. The W, G, and T sectors
together form the Voronoi diagram for the three landmarks.

In Fig. 2 we employ instead the modified projection principle.
With the same three landmarks, we have applied a weighting of 3:2:1
to G, T, and W respectively. The smaller circle containing landmark
W consists of the points exactly three times further from G than from
W. Points inside this circle are assigned value W in preference to G.
Similarly, the larger circle containing W consists of points exactly
twice as far from T as from W, and hence the points inside the cir-
cle would be assigned W in preference to T—except that, outside the
smaller circle, this preference is overridden by the preference for G
over W. The four areas into which the space has been divided by the
circles are labelled GWT, WGT, GTW, and TGW in accordance with
the preference orders for the points they contain. Finally the value T
is assigned to the points in the lighter shaded circle, W to those in the
darker shaded circle, and G everywhere else.
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Figure 2. Modified projection procedure.

Such projection procedures provide a means for provisionally de-
termining the character of a place from what is already known. With
the modified procedure, results will vary with the fluent weightings.
These could be empirically tuned to maximise agreement with real
environments. Such tuning will also depend on other terrain proper-
ties: e.g., standing water is less extensive on sloping than on level
ground and will accordingly be more heavily weighted against in the
former context.

3 Interpolation in quasi-continuous spatial fluents
Some discrete-valued fluents are quasi-continuous, i.e., an adjacency
relation is defined on values so that adjacent regions must have equal
or adjacent values. A simple example arises if a continuous real-
number value such as elevation is discretised by applying a ‘band-
ing’ procedure, e.g., below 200m is ‘Low’, above 1000m is ‘High’,
and other values are ‘Medium’. If the variation in elevation is truly
continuous, then a ‘Low’ area cannot be immediately adjacent to a
‘High’ area, whereas both types can be adjacent to a ‘Medium’ area.

For a fluent of this kind, the projection procedures used above can
lead to ‘illegal’ adjacencies, e.g., a ‘High’ region abutting a ‘Low’
region. Persistence must be supplemented by a continuity principle

to ensure that illegal adjacencies do not occur. The leftmost diagram
in Fig. 3 illustrates an interpolation problem for qualitative elevation.
Five points are given at which the qualitative elevation (H, M, or L) is
known. The problem is to infer a plausible distribution of qualitative
elevations for other locations in the map.
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Figure 3. Interpolation of qualitative elevation

Simple projection yields the central illustration in Fig. 3. The L,
M, and H areas are shaded light, medium and dark respectively. One
of the ‘Low’ areas is adjacent to the ‘High’ area, violating continuity.
In this case, where there is a single intermediate value that can be in-
terpolated, we introduce a new ‘Medium’ point on the boundary be-
tween the adjacent ‘High’ and ‘Low’ areas, as shown, and then apply
projection to the new set of points, (right hand illustration). This is
consistent with continuity, and may be regarded as ‘plausible’—but
note that the procedure has ‘decided’ that there is a ‘Low’ valley sep-
arating the ‘Medium’ ground to the south-west from the ‘Medium’
and ‘High’ ground in the east, rather than, say, a ‘Medium’ ridge
extending SW–NE separating the two ‘Low’ areas on either side.

The right-hand diagram in Fig. 3 may be regarded as expressing
a set of inferences about the lie of the land in areas where it is not
known, on the basis of a small number of places where it is known.
These inferences are defeasible since acquisition of further knowl-
edge may contradict them, requiring a fresh interpolation to be car-
ried out. The true state of affairs may even violate continuity: real
landscapes can exhibit discontinuities in the variables used to de-
scribe them. Continuity is a default assumption, which is reasonable
because in real situations discontinuities tend to be isolated from one
another, separated by areas in which continuity holds sway.

We could extend to this kind of fluent the modified projection pro-
cedure using weightings to privilege some fluent values over others.
In a mainly low-lying landscape with sporadic peaks and ridges, we
might privilege lower elevations over higher, e.g., by weighting L, M,
H in the ratio 5:4:3. In a high plateau landscape incised by tongues
of lower-lying land, these ratios might be reversed. Empirical studies
could ‘fine-tune’ the ratios for best fit to different kinds of landscape.
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