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Abstract. In this paper, I present a region-based spatial logic of
the ternary betweenness relation. I provide semantics and a complete
axiomatization of this first-order theory.

1 INTRODUCTION

In this paper, I present a first-order spatial logic of the region-based
betweenness relation. There are certain types of calculi [1, 2, 3] in
qualitative spatial reasoning literature which base their formalisms
on different primitives, aimed at solving different reprsentation prob-
lems of the spatial domain. I investigate the important propeties of
the logic of the betweenness relation, a much stronger primitive than
that of connection [1, 3].

I present semantics and a complete first-order axiomatization of
region-based betweenness (B for short) from which we show that
our first-order theory is sound and complete. Note that the sort of
completeness we consider is in the weak sense which means that
every true formulae is provable in contrast to absolute sense, where
every formulae of the theory is either true or false. The completeness
proof is inspired by the application of the Henkin method in [1].

The structure of the rest of the paper is as follows: Section 2 gives
the foundations of the first-order theoryB. Section 3 is devoted to the
soundness and completenessB based on the structures presented in
Section 2. Finally in Section 4 we have a glance at the future work.

2 THEORY OF BETWEENNESS

The 1st order language of betweenness,L, contains a ternary primi-
tive relationβ, denumerably-infinite number of variables (p, q, etc.)
and constants (a, b, etc.).β(a, b, c) is read as ‘regiona occurs in be-
tween of regionsb andc’ The relation symbols are sometimes “over-
loaded” by using the same symbol with different number of argu-
ments. For example it should be understood that NTP(x, y) is: ‘x is
a Non Tangential Part ofy’, where as NTP(x, y, z) is: ‘x is a Non
Tangential Part of the betweenness ofy andz’. The formal theory of
B is given as follows:

(A1) ∀xyz[β(x, y, z) → β(x, z, y)]
(A2) ∀xy[∀zw[β(x, z, w) ↔ β(y, z, w)] → x = y]

(A1) is the symmetry axiom for the last two arguments ofβ and
(A2) is the identity axiom.

(D1) P(x, y) ≡d ∀zw[β(x, z, w) → β(y, z, w)]
(D2) O(x, y) ≡d ∃z[P(z, x) ∧ P(z, y)]
(D3) P(x, y, z) ≡d ∀w[P(w, x) → β(w, y, z)]
(D4) O(x, y, z) ≡d ∃w[P(w, x) ∧ P(w, y, z)]
(D5) EC(x, y, z) ≡d β(x, y, z) ∧ ¬O(x, y, z)
(D6) DC(x, y, z) ≡d ¬β(x, y, z)
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(D7) BL(x, y, z) ≡d ∀w[¬O(w, x) ∧ P(w, y, z) → [P(w, x, y)
∨ P(w, x, z)]]

(D8) TP(x, y, z) ≡d P(x, y, z) ∧ ¬BL(x, y, z) ∧
∃wq[EC(x, w, q) ∧ ¬∃p[O(p, y, z) ∧O(p, w, q)]]

(D9) NTP(x, y, z) ≡d P(x, y, z) ∧ ∀pq[β(x, p, q) →
∃w[P(w, y, z) ∧ P(w, p, q)]]

(D10) EC(x, y) ≡d ∀zw[[TP(x, z, w) ∧ ¬O(y, z, w)] →
EC(y, z, w)]

(D11) TP(x, y) ≡d P(x, y) ∧ ∃z[EC(x, z) ∧ EC(y, z)]
(D12) NTP(x, y) ≡d P(x, y) ∧ ¬∃z[EC(x, z) ∧ EC(y, z)]
(D13) C(x, y) ≡d O(x, y) ∨ EC(x, y)
(D14) DC(x, y) ≡d ¬C(x, y)
(D15) PO(x, y, z) ≡d O(x, y, z) ∧ ¬P(x, y, z) ∧ ¬BL(x, y, z)
(D16) TBL(x, y, z) ≡d BL(x, y, z) ∧ P(x, y, z)
(D17) OBL(x, y, z) ≡d BL(x, y, z) ∧O(x, y, z) ∧ ¬P(x, y, z)

The definitions (D1)-(D17) are standard except for relations
BL(x,y,z), TBL(x,y,z) and OBL(x,y,z) meaning ‘x blocks the be-
tweenness ofy andz’, ‘ x tangentially blocks the betweenness of
y andz’ and ‘x overlappingly blocks the betweenness ofy andz’,
respectively. Note that many relation symbols are “overloaded” by
using the same symbol twice with different number of arguments,
as already noted above.

(A3) ∀xy∃z∀uv[β(z, u, v) ↔ ∃w[P(w, x, y) ∧ β(w, u, v)]]
(A3) together with the identity axiom (A2) gives a unique region
BW(x,y), the betweenness ofx andy for everyx andy.

(D18) CX(x) ≡d ∀yzw[P(y, x)∧P(z, x)∧P(w, y, z) → P(w, x)]
CX(x) holds true wheneverx is convex.

(A4) ∀x∃z∀uv[β(z, u, v) ↔ ∃w[CX(w)∧P(x, w)∧ ∀y[P(x, y)∧
CX(y) → P(w, y)] ∧ β(w, u, v)]]
(A4) together with the identity axiom (A2) gives a unique region
CO(x), the convex-hull ofx for everyx.

(A5) ∀xy[TP(CLO(x⊕ y), CLO(BTW(x, y)))]
(A6) ∃x∀yz[β(x, y, z)]

(A5) says that every regionx is a tangential part of betweenness
of x and any other region. (A6) together with the identity axiom
(A2) gives a unique regionU , the universe.

(A7) ∀xyzw[P(x, w, z)∧P(y, w, z) → [P(BW(x, y), BW(w, z))]]
(A7) axiomatizes the transitivity of betweenness.

(A8) ∀xy∃z∀uv[β(z, u, v) ↔ β(x, u, v) ∨ β(y, u, v)]
(A8) together with the identity axiom (A2) gives a unique region
x⊕ y, the sum ofx andy for everyx andy.

(A9) ∀xy[O(x, y) → ∃z∀uv[β(z, u, v) ↔ ∃q[P(q, x) ∧ P(q, y) ∧
β(q, u, v)]]]
(A9) together with the identity axiom (A2) gives a unique region
x⊗ y, the product ofx andy for everyx andy.

(A10) ∀x∃pq[¬β(x, p, q) → ∃z∀uv[β(z, u, v) ↔
∃w[DC(w, x) ∧ β(w, u, v)]]]
(A10) together with the identity axiom (A2) gives a unique region
−x, the complement ofx for everyx such thatx 6= U .



(A11) ∀x∃w∀yz[β(w, y, z) ↔ ∃q[NTP(q, x) ∧ β(q, y, z)]]
(A11) together with the identity axiom (A2) gives a unique region
INT(x), the interior ofx for everyx.

(D19) CLO(x) =d −INT(−x) (D20) CLO(U) =d U
(D21) OP(x) ≡d x = INT(x) (D22) CL(x) ≡d x = CLO(x)

(D19),(D21) and (D22) define the topological operator of closure
of x, CLO(x), and the topological properties of open and closed
OP(x) and CL(x), respectively. (D20) turns the closure into a
function.

(A12) ∀xy[OP(x) ∧OP(y) ∧O(x, y) → OP(x⊗ y)]
(A13) ∀xy[CX(x) ∧ CX(y) ∧O(x, y) → CX(x⊗ y)]

(A12) and (A13) state the same thing that the product of any open
and convex sets is open and convex, respectively.

(A14) ∀x∃y[CX(y) ∧ P(y, x) ∧ ¬P(x, y)]
(A15) ∃xy[EC(x, y)]
(A16) ∃xyz[DC(x, y) ∧ DC(x, z) ∧ DC(z, y) ∧ β(x, y, z)]
(A17) ∀x[CX(x) → CX(INT(x)) ∧ CX(CLO(x))]

(A14),(A15),(A16) and (A17) correspond to the model conditions
of (M8),(M9),(M10) and (M11), respectively.

So far, I have given a first-order axiomatic formalism from which
a proof system can be obtained by adding the axioms and rules of
inference of first-order logic: Modus Ponens and Generalization. I
will call this proof system asPB and adapt the notatioǹB φ iff there
is a proof of the formulaeφ in PB. Next, I present an interpretation
for the languageL.

Definition 2.1. A family C of subsets of a setX is called a convexity
onX if the following are satisfied [4]:

(CS1) ∅, X ∈ C
(CS2)

T
A ∈ C for nonemptyA ⊂ C

(CS3)
S

A ∈ C wheneverA ⊂ C is a chain with respect to the
inclusion.

Definition 2.2. Let X be a set andC a convexity onX. Let X be
also equipped with a topologyT . The triple〈X, T , C〉 is called a
topological convexity space over the domainX. We define the fol-
lowing set properties and operators: open(x), close(x), x◦, x, ∂(x),
~(x) and}(x) : x is open,x is closed, interior ofx, closure ofx,
boundary ofx, convex-hull ofx andx is convex, respectively. We
also definex∩′ y = x∩y∩ (x ∩ y)◦ andx∪′ y = x∪y∪ (x ∪ y)◦.

Definition 2.3. Let X be a set andTC = 〈X, T , C〉 be the topologi-
cal convexity space overX. Let Y ⊆ P(X). We define the structure
MTC = 〈Y, G, δ(a)〉 such that,

(M1) X ∈ Y (M2) ∀x ∈ Y [x◦ ∈ Y ∧ x◦ 6= ∅ ∧ x◦ = x◦]
(M3) ∀x ∈ Y [x ∈ Y ∧ x = x◦ ] (M4) ∀x ∈ Y [~(x) ∈ Y ]
(M5) ∀x ∈ Y [(∼ x)◦ 6= ∅ →∼ x ∈ Y ]
(M6) ∀xy ∈ Y [(x ∩ y)◦ 6= ∅ → x ∩′ y ∈ Y ]
(M7) ∀x ∈ Y ∃y ∈ Y [y ⊂ x∧}(y)] (M8) ∀xy ∈ Y [x∪′ y ∈ Y ]
(M9) ∃xy ∈ Y [x ∩ y 6= ∅ ∧ (x ∩ y)◦ = ∅]
(M10) ∃xyz ∈ Y [x∩y = ∅∧x∩z = ∅∧z∩y = ∅∧x∩ (~(y∪
z)) 6= ∅] (M11) ∀x ∈ Y [}(x) → }(x◦) ∧}(x)]

are satisfied whereasG is a functionG: Y × Y → Y such thatG
(x, y) = ~(x∪y) andG (x, y) is called the betweenness ofx andy.
Finally, δ(a) is a denotation function assigning the terms inL to the
elements ofY for a given assignmenta of free-occurring variables
in terms, to the elements ofY . The denotation of constants inY is
simply obtained by the functionδ. The truth-relation is defined as:

MTC |=a β(x, y, z) if and only if xδ(a)∩ G (yδ(a), zδ(a)) 6= ∅
Naturally, we write|=TC for validity in everyTC-model.

3 SOUNDNESS & COMPLETENESS

The proof of the following theorem can be given by an induction on
the length of the proof ofφ in PB. Base-case amounts to show that
all of the axioms (A1)-(A17) hold inMTC for everyTC.

Theorem 3.1 (Soundness).For anyφ, if `B φ then |=TC φ.

The proof of the completeness follows from an application of the
Henkin-method which consists of the following tree lemmas.

Lemma 3.2 (Lindenbaum Lemma). EveryB-consistent set of sen-
tences can be extended to a maximalB-consistent set of sentences.

Lemma 3.3 (Witness Lemma).EveryB-consistent set of sentences
Γ in L can be extended to aB-consistent set of sentencesΓ′ in L′
such thatL′ = L∪C,L∩C = ∅ andC is an infinite set of constants
which are witnesses forΓ′.

Lemma 3.4 (Henkin Lemma). Every maximalB-consistent set of
sentencesΓ which has a set of witnesses inL yields aMΓ such that
MΓ |= φ if and only ifφ ∈ Γ.

The last step before we show the completeness is to show that the
structureMΓ given by the lemma 3.4 is aMTC -model for some
TC. This can be shown by the following two lemmas.

Lemma 3.5. Let TCΓ = 〈XΓ, TΓ, CΓ〉 be a structure such that
XΓ = ∪{Πc | c ∈ C}, TΓ = {∅} ∪ {Πc | c ∈ C ∧ Γ `
OP(c)} ∪ {∪s | s ⊆ {Πc | c ∈ C ∧ Γ ` OP(c)}} and CΓ =
{∅} ∪ {Πc | c ∈ C ∧ Γ ` CX(c)} ∪ {∪s | s ⊆ {Πc | c ∈ C ∧ Γ `
CX(c)} ∧ s is a chain w.r.t. inclusion} then the structureTCΓ is a
topological convexity space.

Lemma 3.6. The structureMΓ = 〈DΓ, GΓ, δΓ〉 given by the lemma
3.4 is aMTCΓ -model.

Finally, the goal theorem is achieved:

Theorem 3.7 (Completeness).For anyφ, if |=TC φ then `B φ.

4 CONCLUSION & FURTHER WORK

I have given a first-order formalism for region-based betweenness.
Moreover, I have shown thatB is sound and complete. Although
I have carried out a fundamental task regarding the properties of
B, there remains quite a bit to investigate. First of all, expressive
power of this formalism could be explored, specifically in the case
where orientational or positional aspects are considered. Secondly,
one could seek answers to the questions regarding the computational
properties of the theory.
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