A Spatial Logic of Betweenness

Mehmet Giritli 1

Abstract. In this paper, | present a region-based spatial logic of(D7) BL(z,y, 2) =4 Yw[-O(w, z) A P(w,y, z) — [P(w, z,y)
the ternary betweenness relation. | provide semantics and a complete vV P(w, , 2)]]

axiomatization of this first-order theory. (D8) TP(z,y,z) =a P(z,y,2) A —BL(z,y,2) A
Fwg[EC(z, w,q) A =3p[O(p, y, 2) A O(p, w, q)]]
1 INTRODUCTION (D9) NTP(z,y, ) =4 P(x,y, 2) A VpalB(z,p, q) —

FwlP(w,y,z) A P(w, p, q)]]

In this paper, | present a first-order spatial logic of the region-basedD10) EC(z,y) =4 Vzw[[TP(z, z, w) A =O(y, z, w)] —
betweenness relation. There are certain types of calculi [1, 2, 3] in EC(y, 2z, w)]
qualitative spatial reasoning literature which base their formalismgD11) TP(z,y) =4 P(z,y) A 32[EC(z, z) A EC(y, 2)]
on different primitives, aimed at solving different reprsentation prob-(D12) NTP(z,y) =a P(z,y) A =3z[EC(z, z) A EC(y, 2)]
lems of the spatial domain. | investigate the important propeties 0ofD13) C(x,y) =4 O(z,y) V EC(z, y)
the logic of the betweenness relation, a much stronger primitive thaD14) DC(z,y) =4 —C(z, y)
that of connection [1, 3]. (D15) PO(z,y, z) =q O(z,y, z) A =P(z,y, z) A -BL(z,y, 2)

| present semantics and a complete first-order axiomatization ofD16) TBL(z,y, z) =4 BL(z,y, 2) A P(z,y, 2)
region-based betweenneds for short) from which we show that (D17) OBL(x,y, z) =4 BL(z,y,2) A O(z,y, z) A =P(x,y, 2)
our first-order theory is sound and complete. Note that the sort of The definitions (D1)-(D17) are standard except for relations
completeness we consider is in the weak sense which means thatBL(x,y,z), TBL(x,y,z) and OBL(X,y,z) meaningt'blocks the be-
every true formulae is provable in contrast to absolute sense, where tweenness off andz’, ‘ z tangentially blocks the betweenness of
every formulae of the theory is either true or false. The completeness y andz’ and ‘z overlappingly blocks the betweenness,afndz’,
proof is inspired by the application of the Henkin method in [1]. respectively. Note that many relation symbols are “overloaded” by

The structure of the rest of the paper is as follows: Section 2 gives using the same symbol twice with different number of arguments,
the foundations of the first-order thedfy Section 3 is devoted to the as already noted above.
soundness and completenésbased on the structures presented in (A3) Vzy3dzVuv[B(z,u,v) < Jw[P(w, z,y) A B(w, u,v)]]
Section 2. Finally in Section 4 we have a glance at the future work.  (A3) together with the identity axiom (A2) gives a unique region

BW(x,y), the betweenness afandy for everyxz andy.
2 THEORY OF BETWEENNESS (D](.:Eiz CX(z) =4 Vyzw[P(y,x)./\ P(z,z) ANP(w,y,z) — P(w, )]

(x) holds true whenever is convex.

The 1st order language of betweenne&scontains a ternary primi-  (A4) Vz3zVuv([3(z, u, v) < Jw[CX(w) A P(z, w) AVy[P(z,y) A
tive relation3, denumerably-infinite number of variablas §, etc.) CX(y) — P(w, y)] A B(w, u, v)]]
and constantsi b, etc.).3(a, b, ¢) is read as ‘regiom occurs in be- (A4) together with the identity axiom (A2) gives a unique region
tween of region$ andc’ The relation symbols are sometimes “over-  CO(x), the convex-hull o for everyzx.
loaded” by using the same symbol with different number of argu-(A5) Vzy[TP(CLO(z @ y), CLO(BTW(z,y)))]
ments. For example it should be understood that (MTR) is: ‘zis  (A6) JzVyz[B(x,y, 2)]

a Non Tangential Part of’, where as NTRz, y, 2) is: ‘z is a Non (A5) says that every region is a tangential part of betweenness
Tangential Part of the betweennesg/andz’. The formal theory of of x and any other region. (A6) together with the identity axiom
B is given as follows: (A2) gives a unigue regiot!, the universe.
(A7) VayzwlP(z, w, 2) AP(y, w, 2) — [P(BW(, y), BW(w, 2))]

(A1) Vzyz[B(z,y, 2z) — Bz, z,y)] (A7) axiomatizes the transitivity of betweenness.
(A2) Vay[Vzw|B(z, z,w) < By, z,w)] — = = y] (A8) VayIzvuv[B(z, u,v) < Bz, u,v) V By, u,v)]

(A1) is the symmetry axiom for the last two arguments3oéind (A8) together with the identity axiom (A2) gives a unigue region

(A2) is the identity axiom. x @ y, the sum ofr andy for everyx andy.
(D1) P(z,y) =a Vzw[B(z, z,w) — B(y, z,w)] (A9) Vay[O(z,y) — FzVuv[B(z,u,v) < Iq[P(g,z) A P(q,y) A
(D2) O(z,y) =4 3=[P(z,) A P(=,y)] B(q, u,v)]]
(D3) P(z,y,2) =q Yw[P(w,z) — B(w,y, )] (A9) together with the identity axiom (A2) gives a unigue region
(D4) O(z,y, z) =4 FJw[P(w,x) A P(w,y, 2)] x ® y, the product ofc andy for everyz andy.
(D5) EC(z,y,2) =4 B(z,y, 2) A =O(z,y, z) (A10) Vz3Ipq[-B(z,p,q) — I2Vuv[B(z,u,v) <
(D6) DC(z,y,2) =4 ~8(z,y, 2) Fw[DC(w, z) A B(w, u,v)]]]

(A10) together with the identity axiom (A2) gives a unique region
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(All) VzIwVyz[B(w,y, z) < JqINTP(q,z) A B(q,y, 2)]] 3 SOUNDNESS & COMPLETENESS
(A11) together with the identity axiom (A2) gives a unique region
INT (z), the interior ofz for everyz.

(D19) CLO(x) =4 —INT(—z) (D20) CLOU) =4 U

(D21) OP(z) =q = = INT(z) (D22) CL(z) =4 = = CLO(x)
(D19),(D21) and (D22) define the topological operator of closurethegrem 3.1 (Soundness)For any ¢, if 5 ¢ then Erc é.
of z, CLO(z), and the topological properties of open and closed
OP(z) and Cl(z), respectively. (D20) turns the closure into a  The proof of the completeness follows from an application of the

The proof of the following theorem can be given by an induction on
the length of the proof of in Ps. Base-case amounts to show that
all of the axioms (A1)-(A17) hold il?M ¢ for everyTC.

function. Henkin-method which consists of the following tree lemmas.
(A12) Vay[OP(z) A OP(y) A O(z,y) — OP(z ® y)] . .
(A13) Vzy[CX(z) A CX(y) A O(z,y) — CX(z ® y)] Lemma 3.2 (Lindenbaum Lemma). EveryB-consistent set of sen-

(A12) and (A13) state the same thing that the product of any opergences can be extended to a maxifiatonsistent set of sentences.
and convex sets is open and convex, respectively.
(A14) YaTy[CX(y) A P(y, 2) A =P(z,y)]
(A15) 3zy[EC(z,y)]
(A16) Jzyz[DC(z,y) A DC(z, z) A DC(z,y) A B(z,y, z)]
(A17) Vz[CX(xz) — CX(INT(z)) A CX(CLO(x))]
(A14),(A15),(A16) and (A17) correspond to the model conditions Lemma 3.4 (Henkin Lemma). Every maximal3-consistent set of
of (M8),(M9),(M10) and (M11), respectively. sentence¥ which has a set of witnesses/fhyields aMr such that
¢ ifand only ifp € T

Lemma 3.3 (Witness Lemma). EveryB-consistent set of sentences
I' in £ can be extended to A-consistent set of sentencEsin £’
suchthatt’ = LUC, £LNC = (@ andC is an infinite set of constants
which are witnesses fdr'.

So far, | have given a first-order axiomatic formalism from which Mr =

a proof system can be obtained by adding the axioms and rules of The |ast step before we show the completeness is to show that the
inference of first-order logic: Modus Ponens and Generalization. ktrycture My given by the lemma 3.4 is A17c-model for some

will call this proof system a#’s and adapt the notations ¢ iffthere ¢ This can be shown by the following two lemmas.

is a proof of the formulae in Pg. Next, | present an interpretation

for the language’. Lemma 3.5. Let TCr = (Xr,7r,Cr) be a structure such that

Xr = UIl.|c e CHLTr = {0} U{llc|c € CAT +
OP(0)}U{us|s C{ll.|c € CAT I OP(¢)}} andCr =

{0} U{ll. |ce CATFCX(c)}U{Us|sC{ll.|ce CATF

Definition 2.1. A family C of subsets of a seX is called a convexity
on X if the following are satisfied [4]:

(Csy v, XxecC CX(c)} A sisachain w.rt. inclusioh then the structurd’Cr is a
(CS2) N A € C for nonemptyA C C topological convexity space.
(CS3) UA € C wheneverA C C is a chain with respect to the

inclusion. Lemma 3.6. The structureMr = (Dr, {jr, ér) given by the lemma

_— . 3.4is aMrcp-model.
Definition 2.2. Let X be a set and a convexity onX. Let X be

also equipped with a topology . The triple (X, 7,C) is called a Finally, the goal theorem is achieved:

topological convexity space over the domain We define the fol- ]

lowing set properties and operators: ofep closdz), z°, 7, d(z), ~ 1heorem 3.7 (Completeness)For any ¢, if [=rc ¢ then 5 ¢.
®(z) and®(x) : = is open,x is closed, interior ofz, closure ofz,

boundary ofz, convex-hull ofz andz is convex, respectively. We 4 CONCLUSION & FURTHER WORK
also definer' y = xNyN(zNy)° andz U’ y = zUyU (z Uy)°.

. _ I have given a first-order formalism for region-based betweenness.
Definition 2.3. Let X be asetand'C’ = (X, T,C) be the topologi-  \joreover, | have shown thas is sound and complete. Although
cal convexity space ovex. LetY” C P(.X). We define the structure | haye carried out a fundamental task regarding the properties of

Mre = (Y, (), °) such that, B, there remains quite a bit to investigate. First of all, expressive
M1l) X eY(M2)Vz eY[z° €Y Aa® #DANx° =7° power of this formalism could be explored, specifically in the case
M3) VzeY[zeYAT=12°](M4)Vx € Y[®(x) € Y] where orientational or positional aspects are considered. Secondly,
(M5) Vz € Y[(~z)° #0 -~z €Y] one could seek answers to the questions regarding the computational
(M6) Vay € Y[(zNy)° # 0 —zN' ye€Y] properties of the theory.

M7) VzxeYIyeY[yCxzAo(y)] (M8)Vzy € Y[z U y € Y]
(M9) FzyeY[zNny#DA (xzNy)°® =10 REFERENCES
(M10) Jzyz € Y[zNy=0AzNz=0A2Ny=0AzN(®(yU ) o )
) # 0/ MYV € Y[o(e) — 0(a7) A 0(7) R g e e Ak g
are satisfied wheregsis a function(: ¥ x ¥ — Y such that] ceedings of the Fourteenth International Joint Conference on Artificial

Intelligence ed., Chris Mellish, pp. 846-852, San Francisco, (1995).
Morgan Kaufmann.
Theodore de Laguna, ‘Paint, line and surface as sets of poltits’jour-

(z,y) = ®(xUy) and( (z,y) is called the betweennessofindy.
Finally, °®) is a denotation function assigning the termgCino the 2]

elements oft” for a given assignment of free-occurring variables nal of Philosophy19, 449-461, (1922).
in terms, to the elements &f. The denotation of constants I is [3] D.A. Randelll, Z. C_:ui, and A. G. Cohn, ‘A spatial logic based on regipns
simply obtained by the functioh The truth-relation is defined as: and connection’, irProc. 3rd Int. Conf. on Knowledge Representation
and Reasoningpp. 165-176, San Mateo, (1992). Morgan Kaufmann.
Mre o Bz, y, z) ifand only if 22 § (%@, 2°@) £ 0 [4] M. Van de Vel, Theory of Convex Structureblorth-Holland, Amster-
dam, 1993.

Naturally, we writel=r¢ for validity in everyT'C-model.



