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Abstract. The development of component-based software systems
opens the possibility of using model-based diagnosis techniques for
large software systems. We have developed a simple monitoring sys-
tem based on the modeling of the external behavior of software com-
ponents by Petri nets. With each component is associated a local con-
troller which observes the messages received and sent by the compo-
nent and compares them with the specified behavior. As the com-
ponents interact, information is collected on error emission and time
constraint violation to infer indicators about the state of components.

1 INTRODUCTION

Fault occurrence is unavoidable in any large software application.
Nevertheless, attempts of using model-based techniques for the di-
agnosis of software faults are few. Even with the structural improve-
ment brought by object oriented programming, software can hardly
be split into separate entities with clear interaction, unless it is mod-
eled it at a very fine level. But new perspectives are opened by the
development of component-based software engineering which con-
ceives a software application as a set of components – each with a
well-specified role – assembled by explicit rules, and only interact-
ing by message exchange. Since we suppose that the components are
black-boxes, the state of a component can only be estimated by ob-
serving its external behavior. We present a supervision system which
uses a model of the message exchange between the components to
continuously evaluate the state of the components. The supervision
consists in following the evolution of the components from their in-
teraction models as messages are observed. Our approach detects
component degradation or blocking and deals with the problem of
message correlation and of possible uncertainty on the component
evolution. The supervision is local to each component, so it is well
adapted to component-based applications which are often large and
evolve rapidly.

2 COMPONENT BEHAVIOR MODEL

The behavior of each component is modeled in a formalism based
on Petri nets. The places of the Petri net represent the state of the
component. The transitions correspond to the exchanged messages.
Figure 2 shows the behavior model of a travel agent component in
the interaction scenario described in figure 1. The Petri net is com-
plemented as follows:
Typing of places: A place of typewaitfor corresponds to a state in
which a component waits for a message from another component, a
place of typecalculationcorresponds to a state in which a component
is active (places of typedonothingcan be used for synchronization).
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req::port_tr::tripOrder(...)

resp::port_tr::tripOrderAck(...) req::port_ti::ticketOrder(...)

1way::port_c::confirm(...)
1way::port_e::eTicket(...)

Traveler TravelAgent Airline

resp::port_ti::ticketOrderAck(...)
1way::port_i::itinerary(...)

Figure 1. The ticket order application: normal interaction scenario.

Typing of arcs: The arcs of typedata flow link the messages cor-
responding to the same transaction and the arcs of typemulti exec
describe the synchronization between the different transactions.
Temporal constraints: An occurrence instant is associated with
each transition. Temporal constraints between these instants can be
associated to the transitions, they are checked each time the transition
is fired. Theinternal constraintsdescribe the time that normally takes
a component to perform a task between two messages. For example,
if the time that the travel agent component takes to acknowledge a
trip order is between 20 and 100 units of time, the internal constraint
IC1 : t1-t0 in [20,100] can be associated with the transitiontrans1.

Exception handling: We differentiate thefunctional exceptions
which appear in the interface specification of component methods
from all the exceptions that may happen but that are not explicitly
specified in the interface (in general problems due to runtime condi-
tions like resource problems are not considered in the method speci-
fication). The functional exceptions are divided into two classes: the
exceptions due to the client and the ones due to the server. To deal
with the non-functional exceptions and complete the model, a generic
type “UnknownError” is used. The model must describe if a compo-
nent may send an error message as a result of a problem occurring
when it is calculating and what happens if the component receives
an unexpected error message when is it waiting for a response from
another component (if the message is propagated to the client, if the
execution aborts or not).
Messages introspection:Several processes may run in paral-
lel inside the component, the correlation of the messages of
a same data flow is guided by the order in which the mes-
sages occur, but also by indications which specify if the mes-
sages can be correlated by their content. Let’s suppose in
our example that the travel agent component successively re-
ceives two requests:req::port tr::tripOrder(triporder#1) and
req::port tr::tripOrder(triporder#2). If then it emits the message
resp::port tr::tripOrderAck(ack), there is no way to know if this ac-
knowledgment corresponds to the first request or to the second one.
To clear up such ambiguities when the message content makes it pos-
sible, the message description can be extended with variables corre-
sponding to particular fields of the message parameters. Let’s sup-
pose that thetriporder and theack parameters contain the traveler
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Figure 2. Behavior model of the travel agent component.

ID, we could replace the first two transitions by:
req::port tr::tripOrder(triporder, x = triporder.getID())
resp::port tr::tripOrderAck(ack, x = ack.getID()).

The messages will be correlated only if they share the samex.
As it can be noticed, the description must contain the way of ac-

cessing the parameter field (here written as an object method call).

3 COMPONENT HISTORY CONSTRUCTION

The supervision is not done directly from the model presented above
but from a translation of this model into a set of partial transitions
called tiles, following the approach in [3] which we have extended
in order to take into account attributes with arguments and with non-
binary values. Each transition of the Petri net is translated into a tile
which describes the partial state change when the transition is fired.
The following tile corresponds to transitiontrans0. The tile precon-
dition describes the necessary conditions for the transition to fire,
the label corresponds to the observable event and the postcondition
describes the values of the attributes after the transition.t0 is the
message occurrence time,?ethe data flow identifier.

tile trans0[?e] label: port req::tr::tripOrder[?triporder,?t0]
precondition postcondition

start[?e]:(on) start[?e]:(off)
state1[?e]:(off) state1[?e]:(on)
start[?e+1]:(off) start[?e+1]:(on)
triporder[?e]:( ) triporder[?e]:(?triporder)
t0[?e]:( ) t0[?e]:(?t0)

The supervision consists in constructing the possible histories (i.e.
the sets of sequential or concurrent state changes) which explain
the observed messages. A history is constructed by instantiating and
chaining the tiles as messages are observed. An example of possi-
ble history for the travel agent component is given in figure 3. As
the state of a component may be ambiguous, the set of all possible
histories is constructed. During the history construction, statistical
information is collected about error emissions (according to the er-
ror type) and processing times to detect component degradation or
blocking. A precise description of the translation of the Petri net into
tiles and of the history construction and analysis can be found in [4].
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Figure 3. A possible history for the travel agent component. The circled
figures indicate the message occurrence order.

4 RELATED WORK

Few works address the problem of black-box component monitoring.
Closely related to our work is the work in [8, 5] on the supervision
of event-driven, embedded real-time software. The normal compo-
nent behavior is expressed in the ITU Specification and Description
Language SDL. This approach (contrary to ours) is only effective
for monitoring session-oriented services (sessions must execute se-
quentially). Our work is also related to theoracleproblem for soft-
ware testing [1]. Most of the approaches are based on executable
assertions, but for black-box components, only few types of asser-
tions remain applicable, mainly “consistency between arguments”
and “dependency of return value from arguments”[7]. Works extend
the component specification with an interaction protocol [2, 6]. The
possibility of using the interaction models for runtime checking is
suggested but these works mainly focus on behavior composition,
on compatibility checking between interfaces or between interfaces
and implementations. Finally, the work in [9], even if it requires the
component source code, uses measures similar to ours (error rates,
performance) to infer component health indicators.
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