
Abstract.  A system is proposed in which case-based reasoning 
principles are applied to the wayfinding problem for computer 
games.  As case-based reasoning is thought to mimic aspects of 
human thinking, applying this methodology can provide more 
convincing non-player character behaviour.  Additionally, 
knowledge re-use could provide performance gains through a 
reduction in redundant computation.  Agents store a skeleton set of 
known paths and adapt these to solve new wayfinding problems.  
New solutions, along with paths obtained through communication 
with other agents, are reincorporated to create a dynamic, evolving 
case-base of skeleton paths.   
 
1 INTRODUCTION   
Most humans perform wayfinding tasks heuristically [1], whereas 
computer wayfinding is often approached from a mathematical 
search perspective.  This disparity in approach leads to qualitative 
differences in the solutions obtained. 
  One goal of computer game designers is the suspension of 
disbelief of the player.  As many games feature simulated 'human' 
non-player characters (NPCs), bestowing human-like behaviour to 
these characters is important.  Differences between human and 
computer behaviour result in the onset of disbelief, which detracts 
from enjoyment of the game. Recent investigations have shown 
that there is still tremendous scope for improvement in the 
simulation of convincing human behaviour and wayfinding [2].  
 The aim of this experiment was to give NPC agents the ability 
to obtain, store and reuse data about paths in their wayfinding 
processes. Agents should be able to obtain path data through both 
derivation from level geometry and inter-agent communication.  
Paths should be retained in the agent’s knowledge base (KB), and 
future wayfinding decisions should incorporate this knowledge. 
 This skeleton set of known paths should grow and change 
dynamically as the agent moves about the level, affecting future 
decisions to an increasing extent.  It is hoped that as this approach 
approximates a more human-like perspective on the wayfinding 
problem [1], the agents will reflect this by displaying more human-
like behaviour. Additionally, knowledge re-use may allow for more 
efficient wayfinding, providing performance bonuses in games 
where resources are traditionally scarce [3].  Interestingly, routes 
do not always have to be optimal or near optimal; an agent may 
make errors, as long as they are mistakes that a human might make 
under similar circumstances and are not blindly repeated. Another 
research goal is to allow this deeper simulation of NPC wayfinding 
to contribute to emergent gameplay as discussed and defined in [4].  

 

2 APPROACH  
Each agent stores any paths it traverses in its KB, and re-uses this 
knowledge in solving new problems.  Cooperating agents also 
trade cases with each other through some communication system, 
providing a more realistic model of team wayfinding ability. 
 A query is specified in this system by a start position and an 
intended goal position for some agent. When given a query, an 
appropriate skeleton path from the case base is first retrieved, and 
then adapted into a solution.  If no path suitable for adaptation is 
found in the case-base, a solution must be generated entirely. 
 Retrieval of an appropriate case may be approached in many 
ways [5].  For simplicity, a weighted combination of the following 
factors was used to evaluate the utility of each candidate path, S. 
 
• A measure of how often S has been used by the agent 
• The length of S 
• Measures of how well the orientation and curvature of S match 
 the orientation of the general direction of travel for the query 
• An approximation of the distances from the start point to S and  
 from the destination to S 
 
 The obvious approach for the adaptation phase is the same as 
that described in [1], finding connections between the start and end 
points, and the selected skeleton path.  By selecting a suitable path 
as a subgoal2 in the search process, this 'skeleton-based wayfinding' 
can increase the efficiency of the wayfinding process significantly. 
Once a candidate path S has been selected, most conventional 
wayfinding techniques can be adapted to find the missing 
connections from the start and goal nodes to S.   
 The A* algorithm is a well-known form of guided search that is 
both complete and optimal3 [6], and has been widely used in 
computer games [7].  The template A* algorithm in [8] was 
modified to find routes between a given node and a skeleton path.  
 Limited communication of path knowledge between agents is 
accomplished by storing all agent knowledge in semantic nets4 as 
described in [6]. An agent, A, may then probabilistically query 
nearby peer P about some node o in A's semantic net.  P responds 
by returning a subgraph of P's semantic net obtained by a breadth-
first search outwards from o.  This subgraph is then reintegrated 
into A's semantic net.  Skeleton path data can then be propagated 
between agents in a semi-realistic fashion, causing each agent’s 
case base to grow and change dynamically through experience and 
interaction with other agents. As their case base begins to store an 
increasing number of useful paths, their wayfinding abilities should 
improve. As the CBR approach suffers when the case base is too 
large, a 'forgetting' procedure is used to remove older, less used 
paths from the KB. 

                                                                 
2 The use of nodes as subgoals in Island search provides similar advantages. 
3 Provided that the heuristic function h is admissible. 
4 Conceptual graphs would be equally appropriate. 

 Dynamic Skeleton Based Wayfinding 
 

Hans Guesgen and Paul Shotbolt1 

                                                                                                                                               
1 University of Auckland, Auckland, New Zealand email:  
  hans@cs.auckland.ac.nz 



3 RESULTS  
The test system was built using the Torque Game Engine [9].  
Tests were carried out at different waypoint resolutions over two 
game-like environments, a simple outdoor environment, and 
another with more complex geometry, non-axis-aligned buildings 
and a higher obstacle count.  Results indicate that the approach can 
provide some benefits in terms of simulating human behaviour.  
 Due to the smooth curvature of the landscape and simple 
features in test environment A, agents did not have significant 
trouble navigating the terrain at a waypoint resolution of 50x50 
units, and agents visibly re-use past paths in their solutions to 
subsequent queries.  Additionally, a preliminary analysis shows 
that the wayfinding process appears to complete quicker when 
using the dynamic skeleton based system, rather than the original 
A* system, provided there are a significant number of paths in the 
agent’s KB.  At higher waypoint resolutions, these time savings 
appear more significant. Agents also do not often make poor 
choices in their selection of which skeleton path to adapt to solve a 
query.  Both the complexity savings and the path selection are very 
difficult aspects of the system to test, and a more thorough 
investigation would be appropriate for future work. 
 Due to inter-agent communication, certain paths become much 
more frequently used than others, and Kuipers’ [1] positive 
feedback loop appears to be emulated to some extent.  This 
preference for common routes, and while not absolutely 
convincing, still appears more reminiscent of the human school of 
problem solving than the non-skeleton based wayfinding system.  
 Test environment B was more complex, but by no means 
provides a complete evaluation.  Results showed that certain cases 
arise where an agent will take an extremely poor choice of route, as 
illustrated in Figure 1.   
 

 
Figure 1.     An illustration of the poor choice problem.  Here, the agent 
decides to use a known skeleton path (dashed).  It takes the most direct 

route to that path from S, and follows this path before departing towards 
destination D. The resulting route is significantly worse than optimal. 

 
 The choice that the agent makes here is far from optimal and 
hence undesirable. Better adaptation might result in the agent 
choosing a better rendezvous with the skeleton path.  However, 
observe that skeleton path selected is already significantly worse 
than optimal, even if travelling between two points directly on each 
end of the skeleton path itself.  This skeleton path, then, does not 
have high utility and should not be in the case-base. 
 Curiously, the agents performed well for a moderate time 
period, but in longer sessions performance degraded significantly. 
Initially, agents do much of their wayfinding through A*, 
guaranteeing that many new paths are optimal.  As these cases are 
used to solve new queries, less optimal, derivative paths are 

created. These derivative paths are added to the case base, in 
process that initiates a positive feedback loop for poor path 
choices, causing degenerating performance over time. 
Compounding this is another problem involving the ‘forgetting 
function’. The most optimal paths created near the beginning of the 
session are shorter, likely to be used, and hence become early 
candidates for the ‘forgetting system’.  In its current form, the 
forgetting system may be a liability overall. 
 
4 CONCLUSIONS  
Overall, while the system was not as immediately successful as 
initially hoped, the approach is now more thoroughly understood, 
however  from the many intrinsic problems it appears that the 
entire ‘dynamic skeleton-based wayfinding system’ would need an 
overhaul to make it viable.  These problems range from moderate 
flaws, such as imperfections in the ‘path selection’ system, to 
fundamental flaws such as the conflux of factors that cause positive 
feedback to more derivative path choices, resulting in a 
continuously degenerating case base.  
 The degenerating case base issue might be solvable by only 
storing, say, optimal and first-level derivative paths. Genetic 
algorithms may be able to provide better weights for the case 
retrieval process.  With further research, agents may be able to re-
use skeletal path information to help predict opponent movements.
 There have also been a number of successes with this 
investigation, including the occurrence of several emergent 
phenomenon, e.g. the positive feedback loop present when agents 
interact with each other.  Information about more useful paths is 
propagated between agents, and this encourages more interaction 
between other agents in future. 
 As efficient algorithms are critical for computer games, more 
empirical testing of this system is important, however, there is 
significant work to be done resolving critical issues with the 
approach before efficiency should be examined in depth. 
 
REFERENCES  
[1] B. Kuipers, 'The Skeleton in the Cognitive Map: A Computational  
 Hypothesis', Space Syntax: Proceedings of the Third International  
 Symposium, (2001). 
[2] J. E. Laird, 'It knows what you are going to do: Adding  
 anticipation to a QuakeBot',  Proceedings of the Fifth International  
 Conference on Autonomous Agents, 385-392, (2000). 
[3] C. Fairclough, M. Fagan, B. Mac Namee, and P. Cunningham,  
 'Research Directions for AI in Computer Games', Proceedings of the  
 Twelfth Irish Conference on Artificial Intelligence and Cognitive  
 Science, 333-344, (2001). 
[4] H. Smith, The Future of Game Design: Moving Beyond Deus Ex and  
 Other Dated Paradigms, Speech given to the Multimedia  
 International Market, 2001.  [Retrieved from  
 http://www.igda.org/articles/hsmith_future.php on 16 Nov. 2003] 
[5] B. Bartsch-Spörl, M. Lenz, and A. Hübner, 'Case-Based Reasoning  

Survey and Future Directions', Knowledge-Based Systems, Lecture 
Notes in Artificial Intelligence, Springer Verlag, 67-89, (1999). 

[6] S. Russell, and I. Norvig, Artificial Intelligence: A Modern  
 Approach, 5-6,96-106, 306-325, Prentice Hall Inc., 1st edn., 1995. 
[7] K. Sergent, Smart Guys, Morrowind developer diaries, 2003.   
 [Retrieved from http://www.elderscrolls.com/ 
 codex/team_smartguys.htm on 1 Feb.  2004] 
[8] J. Heyes-Jones. A* algorithm tutorial. STL A* 

Template C++ source. [Retrieved from http://www.geocities.com/ 
jheyesjones/astardownloads.html on 5 May 2003] 

[9] Garage Games Inc., The Torque Game Engine, 2003.  [Retrieved 
  from http://www.garagegames.com on 8 Jan 2003] 


