
Utilizing Structured Representations and CSPs in
Conformant Probabilistic Planning

Nathanael Hyafil and Fahiem Bacchus1

1 Introduction2

Conformant planning problems are planning problems under incom-
plete knowledge, non-deterministic actions, and no sensing. Since
the plan is oblivious to the system state, it cannot be conditional.
Instead conformant plans are linear sequences of actions that must
achieve the goal no matter what the under-determined initial state
actually is, and no matter what happens during its non-determinstic
execution. Conformant plans are useful in situations where sensing is
too expensive or when a failure has occurred and sensing is no longer
available. Probabilistic conformant plans are a useful generalization
in the case when we can quantify the different possible initial states,
and the different possible execution paths with probabilities. A prob-
abilistic conformant plan is one that has a probability of success, and
the conformant probabilistic planning problem, CPP, is the problem
of finding a plan with maximum probability of success.

In previous work we presented a planning algorithm for solving
CPPs [1]. This algorithm employed a CSP encoding of the problem,
and a backtracking tree search similar in spirit to the SAT based
encoding used in the MAXPLAN planner [3] (which also solved
CPPs). Although the CSP approach yielded consistently superior per-
formance to the SAT based MAXPLAN, its performance was gener-
ally inferior to state-of-the-art algorithms for Partially Observable
Markov Decision Processes (POMDPs). Such POMDP algorithms
can solve CPP as a special case. One of the main problems with our
previous approach was that the algorithm’s worst case exponential
space complexity was often realized in practice. Nevertheless, the
core ideas embodied in the algorithm captured a number of useful
intuitions for solving CPPs more effectively [1].

In this paper we recast our algorithm so that it can utilize decision
diagrams; specifically algebraic decision diagrams (ADDs) [4]. De-
cision diagrams have been used before for various types of planning,
but not previously for CPP and not previously in the manner we uti-
lize them here. Decision diagrams still have worst case exponential
space complexity, but in practice can often be much more compact.
Our empirical results demonstrate that this is generally the case in
our application as well.

2 Background
States in a CPP problem are represented by a set of state variables
each of which can take on a finite number of different values. A
complete set of assignments to these variables specifies a particu-
lar state; S contains all possible complete sets of assignments. A

1 Department of Computer Science, University of Toronto, Toronto, Canada.
email: nhyafil@cs.utoronto.ca, fbacchus@cs.utoronto.ca.

2 Due to space considerations a number of important details and citations
of related work have been elided. See [2] for a more detailed presentation
including citations of related work.

CPP includes a specifed initial belief state B, which is a probabil-
ity distribution over S: for any s ∈ S , B[s] is the probability of s.
The problem is to achieve a goal G ⊆ S , using probabilistic actions
from the set A. For each pair of states s, s′ and action a, Pr(s, a, s′)
denotes the probability that a yields s′ when executed in s. A plan
π = 〈a1, . . . , ak〉 generates a set of execution paths. Each execu-
tion path is a length k + 1 sequence of states s0, s1, . . . , sk where
B[s0] > 0, and Pr(si−1, ai, si) > 0 for all 0 < i ≤ k. The first
state s0 is a possible initial state, and each subsequent state is a pos-
sible successor of the previous state under the action specified in π.
The probability of an execution path is B[s0]

∏
k

i=1
Pr(si−1, ai, si).

This is the probability that executing π will yield this particular se-
quence of states. The value of π is equal to the sum of the probabil-
ities of all of its execution paths whose final state is in G, i.e., the
probability that π achieves the goal.

To encode a length n CPP as a CSP, n + 1 copies of the state vari-
ables are used, indexed by the plan step; each copy is used to repre-
sent one of the states in a possible execution path of a n-length plan.
There are also n action variables, each one with domain equal to the
set of actions. n additional sets of “random” variables are used to
capture the randomness of the action effects: the legal settings of the
i-th random variable correspond to the possible probabilistic effects
of the i-th action on the i-th state. Thus each setting of these variables
has a particular probability—the probability the i-th action will have
this particular effect–and determines the i-th action’s effects. There
are three types of constraints: initial and goal state constraints (which
force the initial state to be one where B[s] > 0 and the goal state to
be in G), and action constraints. These constraints force the transi-
tions between si and si+1 to be compatible with ai given the random
effects determined by the i-th random variables. Each solution to the
CSP is a particular execution path of a particular length n plan that
reaches the goal.

Conceptually CPP can be solved by finding all solutions to its CSP
encoding and for each plan summing the probability of the solutions
corresponding to its execution paths. In this context, the CSP con-
straints serve to eliminate zero probability execution paths, and con-
straint propagation serves to prune some of the path prefixes that
have probability zero of reaching the goal. Goal reachability analy-
sis through constraint propagation is one of the main features of the
CSP approach. Summing all solutions is not practical, but dynamic
programming techniques can be employed to cache and reuse inter-
mediate results as follows. During the search we will visit nodes ν

corresponding to a particular state si at the i-th step of an execu-
tion path. The path to ν corresponds to some execution path prefix
s0, s1, . . . , si for some plan prefix a1, . . . , ai, and the subtree un-
der ν will contain all successful execution path suffixes si+1, . . . , sn

(sn ∈ G) for all possible plan suffixes τ = ai+1, . . . , an. If for all

Name p2-2-2 p3-2-2 p4-2-2 p2-2-4
l-t-p-a 4-2-2-1 6-2-2-2 8-2-2-1 3-2-4-1
|S| 392 1458 3872 19208
|A| 30 46 66 54
n CPplan Pomdp CPplan Pomdp CPplan Pomdp CPplan Pomdp
1 0 0.2 0 5.8 0 73.7 0 648
2 0 1.8 0 48.8 0 1123 0 13974
3 0 6.5 0 116 0 3184 0 –
4 0 21.5 0 230 0.1 9119 0 –
5 0.1 66.6 0 451 0.5 – 0.3 –
6 0.6 212 0.3 877 2.4 – 2.1 –
7 1.7 737 1b.9 1796 10.9 – 11.4 –
8 3.7 3495 5.7 3871 34.9 – 39.9 –
9 7.6 – 15.6 9378 83.0 – 185 –
10 14.8 – 28 – 208 – 391 –
11 42.6 – 45.8 – 304 – 722 –
12 281 – 68.8 – 648 – 1221 –
13 oom – 122 – 6398 – 1445 –
14 – 414 – oom – 3725 –
15 – oom – – – oom –

Table 1. Solution Time on 4 Logistics problems in CPU sec. using Caching with ADDs. l-t-
p-a: number of locations, trucks, packages and airplanes. |S|: number of states, |A|: number of
actions. n (plan length). “–”: > 15000 seconds.

Deterministic Full Uncertainty
n CPplan Pomdp CPplan Pomdp
1 0 5.0 0 6.4
2 0 49.7 0 53.6
3 0 104.0 0 127.7
4 0 170.4 0 254.1
5 0.1 279.7 0 498.3
6 0.5 427.7 0.3 967.8
7 2.5 674.8 1.5 1934
8 8.9 1054 5.3 4031
9 23.6 1614 13.6 9163
10 31.4 2686 26.0 –
11 40.7 3907 32.7
12 35.0 5776 40.7
13 41.9 8536 51.7
14 69.9 11777 128.8
15 68.2 – 1124
16 91.7 oom
17 99.0
18 103.6
19 91.6
20 126.6
21 137.1
22 oom

Table 2. Solution Time on P-3-2-2 with “ex-
treme” probability settings (CPU sec.) using
Caching with ADDs. n: plan length. “–”: >

15000 seconds.
such plan suffixes we store the probability of their success from si,
we can reuse this information whenever another execution path pre-
fix for any other plan prefix reaches the same state si. That is, we
never need search the subtree below the same state at the same step
of the plan twice.

Two pieces of information are stored at every step i of the plan:
a list of visited states at step i, and, for each one, the value of every
length n − i plan suffix in that state. Our previous algorithm used
a tabular representation for this, requiring space exponential in the
plan length. In our new implementation we store this information in
an ADD which builds up a much more compact representation of the
information. This allows us to empirically validate the potential of
the CSP approach by showing that it can in fact be much more effec-
tive than state of the art POMDP algorithms on certain problems.

3 Empirical Results

In order to evaluate our modified CSP algorithm we utilized two test
domains, GRID-10X10 and a probabilistic version of the standard AI
planning benchmark LOGISTICS. All experiments were performed
on a 2.4 GHz Xeon machine with 3GB of RAM.

GRID-10X10: GRID-10X10 has a state space size of 100, but
each of its 4 actions can only reach 3 states. Hence, GRID-10X10
has significant deterministic structure in its transition probabilities.
The CSP approach, with its constraint propagation, is able to take ad-
vantage of this deterministic structure. The results for GRID-10X10
are shown in Table 3. The results compare the previous tabular rep-
resentation, the ADD representation, and the witness algorithm for
solving POMDPs. We see that ADDs offer a significant improve-
ment over tables, and that the CSP approach is significantly better
than the POMDP algorithm.

Logistics: The results on four different problems from the Logis-
tics domain are shown in Table 1. In these problems load and unload
are probabilistic. load succeeds with probability 0.875 for trucks and
0.9 for airplanes; succeeds with probability unload 0.75 and 0.8 re-
spectively. CPplan in its tabular representation could not solve prob-
lems with so many actions and states due to the memory required. As
the data shows CPplan with ADDs can generate at least 12 step plans
in all of these domains whereas POMDP algorithms can solve at best
9-step problems and no more than 2 steps for the biggest instance
within the 15, 000 seconds allowed (raising this limit to 100, 000

Init. n C+Table C+ADD POMDP
(7,6) 5 0.01 0.06 1.21
(6,6) 6 0.01 0.10 1.44
(6,5) 7 0.01 0.16 2.15
(3,3) 12 2.97 1.12 237.0
(3,2) 13 11.72 1.72 508.8
(2,2) 14 oom 2.31 949.5
(1,1) 16 - 4.79 2282.3
(0,0) 18 - 11.44 3098.6
(0,0) 19 - 129.12 -

Table 3. Time on GRID-10X10 in CPU sec. Init. (initial state), n (plan
length), C+Table (caching with tables), C+ADD (caching with ADDs),
POMDP (witness algorithm), oom (out of memory), - (> 3,600 sec).

seconds only allows for one additional step to be solved). Also on
problems that both techniques can tackle, CPplan can be up to 3 or-
ders of magnitude faster.

Finally in order to evaluate how the amount of uncertainty affects
the relative performance of CPplan and POMDP we ran the problem
suites using entirely 0/1 probabilities (so that the problem becomes
non-deterministic rather than probabilistic) and probabilities of 0.5
(maximal uncertainty). We report on problem p-3-2-2.

The results show that the relative performance does not change
much: CPplan remains orders of magnitude faster than POMDPs.
However, both algorithms find the deterministic problem signifi-
cantly easier. (This also helps illustrate how much harder CPP is than
non-probabilistic conformant planning.) Interestingly, in the full un-
certainty case CPplan is a bit faster than the results given in Table 1—
with equal probablity values the ADDs tend to be more compact as
the functions tend to take on fewer distinct values.

REFERENCES
[1] Nathanael Hyafil and Fahiem Bacchus, ‘Conformant probabilistic plan-

ning via csps’, in International Conference on Automated Planning and
Scheduling (ICAPS 2003), pp. 205–214, (2003).

[2] Nathanael Hyafil and Fahiem Bacchus, ‘Utilizing Structured Rep-
resentations and CSPs in Conformant Probabilistic Planning’, in
http://www.cs.toronto.edu/∼fbacchus/Papers/HBECAI2004full.pdf,
(2004).

[3] Stephen M. Majercik and Michael L. Littman, ‘MAXPLAN: A New Ap-
proach to Probabilistic Planning’, in The Fourth International Confer-
ence on Artificial Intelligence Planning Systems, pp. 86–93, (1998).

[4] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, ‘Algebraic Decision Diagrams and Their Applications’,
in IEEE /ACM International Conference on CAD, pp. 188–191, Santa
Clara, California, (1993). IEEE Computer Society Press.

