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Tr žǎska 25, SI-1001 Ljubljana, Slovenia
matjaz.kukar@fri.uni-lj.si

Abstract. Although machine learning algorithms have been suc-
cessfully used in many problems, and are emerging as valuable
data analysis tools, their serious practical use is affected by the fact
that often they cannot produce reliable and unbiased assessments
of their predictions’ quality. There exist several approaches for es-
timating reliability or confidence for individual classifications, and
many of them build upon the algorithmic theory of randomness, such
as transduction-based confidence estimation, typicalness-based con-
fidence estimation, and transductive reliability estimation. Unfortu-
nately, they all have weaknesses: either they are tightly bound with
particular learning algorithms, or the interpretation of reliability es-
timations is not always consistent with statistical confidence levels.
In the paper we propose a joint approach that compensates the men-
tioned weaknesses by integrating typicalness-based confidence esti-
mation and transductive reliability estimation into a joint confidence
machine.

1 INTRODUCTION

Usually machine learning algorithms output only bare predictions
(classifications) for the new unclassified examples. While there are
ways for almost all machine learning algorithms to at least partially
provide quantitative assessment for the particular classification, so
far there exists no general method. Note that we are interested in the
assessment of classifier’s performance on asingle exampleand not
in average performance on an independent dataset. Such single as-
sessments are very useful, especially when used in ensembles and
risk-sensitive applications[2] since there it often matters, how much
one can rely upon a given prediction. In such cases an overall quality
measure of a classifier (e.g. classification accuracy) would not pro-
vide the desired information. There have been numerous attempts
to assign probabilities to machine learning classifiers’ in order to
interpret their predictions as probability distributions over all pos-
sible classes. The posterior probability of the predicted class can be
viewed as a classifier’s confidence (reliability) of its prediction. How-
ever, such estimations may in general not be good due to inherent
algorithm’s bias(es)[1].

2 METHODS AND MATERIALS

Given some possible label spaceY , if an algorithm predicts some set
of labelsY ⊆ Y with confidencet for a new example which is truly
labelled byy ∈ Y , we expect the confidence to have the following
property:P(y /∈Y)≤ 1− t. As this paper deals only with single class
predictions (̃y) the property can be simplified toP(y 6= ỹ)≤ 1− t.

2.1 Typicalness

The typicalness framework[3, 5] can produce nearly precise con-
fidence values estimations for data which is independently and
identically distributed (iid). To measure the typicalness of se-
quences of labelled examples, we define, for everyn ∈ N, a func-
tion t : Zn → [0,1] which, for any r ∈ [0,1] has the property
P((z1, . . . ,zn) : t(z1, . . . ,zn)≤ r)≤ r. If such a function returns0.05
for a given sequence, we know that the sequence is unusual because
it will be produced at most5% of the time by anyiid process. It has
been shown[3] that we can construct such typicalness functions by
considering the strangeness (α(zi)) of individual examples. In ma-
chine learning, typicalness of a new examplex labelled withỹ given
the training set(z1, . . . ,zn) is calculated as

t((z1, . . . ,zn,x; ỹ)) =
#{α(zi) : α(zi)≥ α(x; ỹ)}

n+1
(1)

For a given machine learning algorithm, first we need to mod-
ify it in order to construct an appropriate strangeness measure.
Then, for each new unlabelled examplex, all possible labels̃y ∈ Y
are considered. For each labelỹ a typicalness of labelled exam-
ple t(x; ỹ) = t((z1, . . . ,zn,x; ỹ)) is calculated. Finally, the example
is labelled with “most typical” class, that is the one that maxi-
mizes{t(x; ỹ)}. The second largest typicalness is an upper bound
on the probability that the excluded classifications are correct[4].
Consequently, the confidence is calculated asconfidence(x; ỹ) = 1−
typicalness of second most typical label.

2.2 From reliability to confidence: merging
typicalness and transduction frameworks

The transductive reliability estimation process and its theoretical
foundations originating from algorithmic theory of randomness are
described in more detail in[2]. Briefly sketched, an unlabelled ex-
amplex is predicted a class̃y and respective class probability distri-
butionP by the given machine learning classifier. The examplex is
then labelled with the class̃y, the newly labelled example(x; ỹ) is
temporarily inserted into the training set, and then its class and class
probability distributionQ are newly predicted. Reliability (Rel(x; ỹ))
of the predicted class is calculated as a similarity between the two
class probability distributions, and is normalized to the[0,1] inter-
val. While this approach provides a measure that separates correct
and incorrect classifications quite well, its numerical values usually
cannot be interpreted as confidence levels, and their numerical ranges
are very much domain- and algorithm- dependent[1]. This is a good



reason for merging typicalness and transductive reliability estimation
frameworks. While transduction gives good reliability estimations,
they are often hard to interpret in the statistical sense. On the other
hand, the typicalness framework gives clear confidence values, how-
ever in order to achieve this a good strangeness measure needs to
be constructed. In[3, 4] some ideas on how to construct strangeness
measures for different machine learning algorithms are presented.
However, we can always use transductive reliability estimation as
a strangeness measure. We wish to treat most reliable examples as
least strange. Therefore we define a general strangeness measure as
follows.

α(xi ; ỹi) = 1−Rel(xi ; ỹi) ∈ [0,1] (2)

It can easily be shown that Eq.2 satisfies the condition[3] required
for strangeness measures.

3 RESULTS

To validate the proposed methodology we perform extensive exper-
iments with 6 different machine learning algorithms on 15 well-
known benchmark datasets. All experiments are performed by leave-
one-out testing. In this setup, one example is reserved, while learning
and preparatory calculations are performed on the rest. Usually, two
nested leave-one-out testings are carried out.

The confidence values obtained by typicalness calculation are
compared with transductive reliability estimations and kernel den-
sity estimation. Confidence values and reliability estimations per-
form similarly in terms of information gain (that is, their discrimi-
nation ability), while confidence values significantly (p < 0.05 with
two-tailed, pairedt-test) outperform reliability estimations in terms
of correlation with correctness of classification. From Fig.1 it is clear
that this is because of the shift towards 1 and 0. Comparing confi-
dence values and kernel density estimation shows a slightly different
picture. Here, in terms of correlation with correctness as well as for
information gain criterion, all differences are significant (p < 0.01
with two-tailed, pairedt-test).

Figures1(a) and 1(b) depict how reliability estimations in are
transformed to confidence levels. This is a typical example and prob-
ably the most important result of our work, as it makes them easily
statistically interpretable. On average, the best decision boundary for
reliability estimations is0.74, for confidence it is about0.45. Also,
the mass of correct and incorrect classification has shifted towards1
and0, respectively.

We also compared the results of confidence estimation on KNN
(nearest neighbour) algorithm with that of the TCM-NN nearest
neighbour confidence machine[4], where a tailor-made strangeness
measure for confidence estimation in typicalness framework was
constructed. Results of TCM-NN are slightly, though insignificantly
better, as could be expected from a proprietary method.

4 DISCUSSION

We propose an approach that compensates the weaknesses of
typicalness-based confidence estimation and transductive reliability
estimation by integrating them into a joint confidence machine.

The resulting values are true confidence levels, and this makes
them much easier to interpret. Contrary to the basic typicalness and
transductive confidence estimation, the described approach is not
bound to the particular underlying classifier. This is an important im-
provement since this makes possible to calculate confidence values
for almost any classifier, no matter how complex it is.

Experimental results performed with several different machine
learning algorithms in several problem domains show that there is no
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Figure 1. Densities of reliability estimations and confidence levels in
Soybean dataset using neural networks.

reduction of discrimination performance with respect to transductive
reliability estimation and proprietary approaches. More importantly,
statistical interpretability of confidence values makes possible for ap-
plications in risk-sensitive problems with strict confidence limits.

The main drawback of our approach is computational complex-
ity, as it needs to perform the leave-one-out testing in advance, and
requires temporary re-learning of a classifier for each new example.
However, this is not a problem if fast incremental learners (such as
naive Bayesian classifier) are used.
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