
Problems with Local Consistency for Qualitative Calculi
Gerard Ligozat †, Jochen Renz ‡

Abstract. Qualitative spatial and temporal reasoning problems are
usually expressed in terms of constraint satisfaction problems, with
determining consistency as the main reasoning problem. Because of
the high complexity of determining consistency, several notions of
local consistency, such as path-consistency, k-consistency and corre-
sponding algorithms have been introduced in the constraint commu-
nity and adopted for qualitative spatial and temporal reasoning. Since
most of these notions of local consistency are equivalent for Allen’s
Interval Algebra, the first and best known calculus of this kind, it
is believed by many that these notions are equivalent in general—
which they are not! In this paper we discuss these various notions of
consistency and give examples showing their different behaviours in
qualitative reasoning. We argue that algebraic closure, which can be
enforced by applying a path-consistency algorithm, is the only fea-
sible algebraic method for deciding consistency, and give a heuristic
about when algebraic closure decides consistency.

1 Qualitative spatial and temporal calculi
Qualitative spatial or temporal knowledge can be represented using
constraints over a given set of relations, the main reasoning problem
is deciding whether a network of spatial or temporal constraints is
consistent. What distinguishes spatial and temporal CSPs from stan-
dard ones is mainly that the domains of the variables are usually in-
finite, as there is an infinite number of spatial or temporal entities.
Solving these CSPs is in general NP-hard, since it is not possible to
effectively enumerate the domains. As shown by Ladkin and Maddux
[4], it is still possible to apply constraint based reasoning methods
such as path-consistency for temporal (and spatial) CSPs with infi-
nite domains, provided that constraint propagation is done over the
relation labels instead of the domain values. So constraint propaga-
tion is essentially applying relational composition. This worked well
for the Interval Algebra [1], the first and best known temporal al-
gebra, which represents different topological relationships between
convex intervals on a continuous time line: the usual properties of
local consistency were preserved and the same methods could be ap-
plied. It is therefore believed by many that this carries over to other
spatial and temporal calculi–which it does not! We will analyse in the
following which properties of qualitative spatial and temporal calculi
are responsible for this unexpected behaviour and try to find out what
can be done about it.

1.1 Constraint networks and local consistency
We first give some background and recap some important notions.

Constraint networks Knowledge between different entities can
be represent by using constraints. A binary constraint xRy between
two variables x and y restricts the possible instantiations of x and
y to the tuples contained in the relation R. A constraint satisfac-
tion problem (CSP) consists of a finite set of variables V , a do-
main D with possible instantiations for each variable vi ∈ V and
a finite set C of constraints between the variables of V . A solu-
tion of a CSP is an instantiation of each variable vi ∈ V with a
value di ∈ D such that all constraints of C are satisfied, i.e., for
each constraint viRvj ∈ C we have (di, dj) ∈ R. If a CSP has a
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solution, it is called consistent or satisfiable. Several algebraic op-
erations are defined on relations that carry over to constraints, the
most important ones being union (∪), intersection (∩), and comple-
ment (·) of a relation, defined as the usual set-theoretic operators,
as well as converse (·^) defined as R^ = {(a, b)|(b, a) ∈ R}
and composition (◦) of two relations R and S which is the relation
R ◦ S = {(a, b) | ∃c : (a, c) ∈ R and (c, b) ∈ S}.
Path-consistency Because of the high complexity of deciding

consistency, different forms of local consistency and algorithms for
achieving local consistency were introduced. Local consistency is
used to prune the search space by eliminating local inconsistencies.
In some cases local consistency is even enough for deciding consis-
tency. Montanari [7] developed a form of local consistency which
Mackworth [6] later called path-consistency. Montanari’s notion of
path-consistency considers all paths between two variables. Mack-
worth showed that it is equivalent to consider only paths of length
two, so path-consistency can be defined as follows: a CSP is path-
consistent, if for every instantiation of two variables vi, vj ∈ V that
satisfies viRijvj ∈ C there exists an instantiation of every third vari-
able vk ∈ V such that viRikvk ∈ C and vkRkjvj ∈ C are also satis-
fied. Formally, for every triple of variables vi, vj , vk ∈ V: ∀di, dj :
[(di, dj) ∈ Rij → ∃dk : ((di, dk) ∈ Rik ∧ (dk, dj) ∈ Rkj)].
Montanari also developed an algorithm that makes a CSP path-
consistent, which was later simplified and called path-consistency
algorithm or enforcing path-consistency. A path-consistency algo-
rithm eliminates locally inconsistent tuples from the relations be-
tween the variables by successively applying the following operation
to all triples of variables vi, vj , vk ∈ V until a fixpoint is reached:
Rij := Rij ∩(Rik ◦Rkj). If the empty relation occurs, then the CSP
is inconsistent. Otherwise the resulting CSP is path-consistent.

We emphasise at this point that these are actually two different def-
initions of path-consistency: one involves the formal definition using
instantiations of variables; the second one defines path-consistency
as the result of the path-consistency algorithm. Since both defini-
tions are equivalent under the above defined preconditions, they are
often used interchangeably in the literature. Sometimes the first def-
inition is called 3-consistency, while the second definition is called
path-consistency. In this paper, we use the term algebraically closed,
or a-closed, for CSP’s satisfying the second definition.
k-consistency Freuder [3] generalised path-consistency and the

weaker notion of arc-consistency to k-consistency: A CSP is k-
consistent, if for every subset Vk ⊂ V of k variables the following
holds: for every instantiation of k − 1 variables of Vk that satisfies
all constraints of C that involve only these k − 1 variables, there is
an instantiation of the remaining variable of Vk such that all con-
straints involving only variables of Vk are satisfied. So if a CSP is
k-consistent, we know that each consistent instantiation of k−1 vari-
ables can be extended to any k-th variable.

2 Local consistency for qualitative calculi
The definition of k-consistency relies upon properties that must hold
for all values of the domains involved. For CSPs with finite domains
these properties can be verified, but for qualitative calculi over indef-
inite domains, this definition seems to be overly strong and it seems
impossible to verify the necessary properties in all cases. For 3-
consistency, this does not seem to be a problem as it is directly related



to compositions of relations. And, as shown by the best known qual-
itative temporal and spatial calculi, the Interval Algebra and RCC8
[8] the path-consistency algorithm decides consistency for these cal-
culi, so the definitions seem to work also for qualitative calculi over
infinite domains. In the following we will show that this assumption
is wrong in general and show what we can do about it.

2.1 Encounter with the unexpected
As first pointed out by Düntsch [2], the composition table of RCC8
does not reflect the real composition according to the definition of
composition, but only corresponds to the weak composition (R � S)
of R and S which is defined as the union of all atomic relations
intersecting R ◦ S. Therefore, the path-consistency algorithm oper-
ates on weak composition instead of composition, and consequently
the equivalence between algebraic closure (the result of the path-
consistency algorithm) and 3-consistency does not hold anymore.
This is shown in the following example which is an algebraically
closed but not 3-consistent atomic CSP over RCC8: B{TPP}A,
B{EC}C, C{TPP}A. If A is instantiated as a region with two
pieces and B completely fills one piece, then C cannot be instan-
tiated. Proving whether the specified composition is actually a real
composition can be extremely difficult if not impossible when having
infinite domains and often becomes apparent only if a counterexam-
ple can be found. It also depends on the domain which is used. For
the interval algebra, for example, algebraic closure is equivalent to
3-consistency if a rational domain is used, while it is not equivalent
if integer domains are used.

Where do we go from here? In most cases, qualitative spatial and
temporal calculi are based on weak composition only [5]. But if we
have only weak composition, then the result of applying a path-
consistency algorithm will not necessarily be a path-consistent/3-
consistent CSP. Does this mean that all local consistency methods
are useless for qualitative spatial and temporal calculi, since we can-
not be sure in many cases whether we are dealing with composition
or only with weak composition?

2.2 Some answers and possible solutions
Our answer to this question is a clear “no”! What is important in
qualitative spatial and temporal reasoning is mainly to have a (effi-
cient) procedure for deciding whether a given instance is consistent
or not. It is only of secondary interest whether an instance is or can be
made k-consistent. In our opinion k-consistency is much too strong,
as it requires that some properties hold for all possible instantiations
(of an infinite domain!), while for consistency only one instantiation
is necessary. We also want to stress that for the same reason it is not
bad if only weak composition is used in a qualitative calculus.

So how can we make use of local consistency methods when
maybe only weak composition is known? As we can see from the
RCC8 case, the path-consistency algorithm is a very powerful lo-
cal consistency method. Contrary to what its name suggests, it does
not necessarily make a given CSP over an infinite domain path-
consistent, but it always computes its algebraic closure (it should be
called the algebraic closure algorithm instead). A non-empty alge-
braic closure is often equivalent to a CSP being consistent. Actually
the algebraic closure method is the strongest available purely alge-
braic method, i.e., only based on relational operators, so in the fol-
lowing we will analyse when the path-consistency algorithm decides
consistency and when it does not. In general this has to be proven for
each calculus anew, so the question is whether it is possible to find
some indications by which we can tell for a given calculus whether
the path-consistency algorithm is likely to decide consistency or not.
We analysed atomic CSPs over different spatial and temporal calculi
in order to see if we can derive some general properties.

First we looked at those calculi where the path-consistency algo-
rithm does not decide consistency, among which are the INDU cal-
culus, the cyclic interval calculus, the Star calculus, the pentagonal
algebra and the containment algebra. For the Star calculus, e.g., it is
possible to refine atomic relations to subatomic relations by speci-
fying a particular arrangement of constraints, independent of the in-
stantiation of the variables [9]. Using a different arrangement, it is
possible to refine the same atomic relation to a different subatomic
relation. It is clear that when we combine these two arrangements
such that the constraint is refined to different subatomic relations,
then the CSP is inconsistent, which cannot be detected by the path-
consistency algorithm. From this example we can derive a conjecture
which we will test with the other calculi.

Conjecture 1 The path-consistency algorithm decides consistency
for a calculus A if and only if it is not possible to refine an atomic
relation to subatomic relations whose intersection is empty.

For all the calculi we studied where the path-consistency algorithm
does not decide consistency, we found an arrangement of constraints
by which an atomic relation can be refined to sub-atomic relations
that do not intersect. It can sometimes be quite hard to find such
an arrangement. As a simple heuristic one should try to see if the
domain enables more distinctions than those made by the atomic re-
lations and if any of these finer distinctions can be enforced by an
arrangement of constraints over atomic relations. For those calculi
where the path-consistency algorithm decides consistency, we could
not find a way of refining atomic relations. This shows us an impor-
tant point: How can we prove that there is no arrangement of con-
straints such that an atomic relation can be refined? This might be as
hard as showing that path-consistency decides consistency.

3 Conclusions
We showed in this paper that local consistency for qualitative CSPs
behaves in quite different ways than in the classical finite case,
and tried to clarify the confusion which apparently exists in the
spatial and temporal reasoning community regarding different no-
tions of local consistency. In many cases the various notions are not
equivalent, in particular k-consistency can often not be enforced by
k-consistency algorithms. For the algebras we usually consider in
qualitative spatial and temporal reasoning and for their infinite do-
mains we often only have weak compositions. However, since we are
mainly interested in determining consistency, the lack of real com-
position is not a big loss. Instead it is more important to find out
when the path-consistency algorithm, which is actually the strongest
general and purely algebraic method we have at hand, decides con-
sistency. By analysing several spatial and temporal calculi we have
identified a property which seems to be very helpful in answering
this question.
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