
A Critical-Shaking Neighborhood Search for the
Yard Allocation Problem

(extended abstract)

Andrew Lim and Zhou Xu12

1 Introduction

Singapore is one of the world’s busiest ports having more than
one hundred thousand ship arrivals every year. Competing
pressures for limited land use and competition from other re-
gional and international ports impel port planner to use as
minimum space of the container yard as possible to recon-
cile all different requests. The current yard allocation is made
manually. To save the manpower, an automated way needs to
be designed.

The yard allocation problem (YAP) was first introduced
and defined in [3], by extending the berth allocation prob-
lem [5] and other port operations studies [1]. We adopt their
definition of the YAP as follows. Let E denote an infinite
container yard. Give a set R of n yard space requests. Every
request Ri ∈ R spans from time TSi to time TEi and has
a series of continuous space requirements Yi,t, each of which
has a length Li,t for every time period t, where t ∈ Ti and
Ti = {TSi, TSi + 1, ..., TEi}. To allocate spaces to requests,
an allocation mapping F needs to be chosen to assign a start-
ing position F (Yi,t) ∈ E to every Yi,t, where i ∈ R and t ∈ Ti.
Any space can not be allocated to different requests during
the same time. Furthermore, because spaces allocated to a re-
quest will keep occupied until the request ends, the mapping
F must satisfy that for every request Ri ∈ R and t ∈ Ti but
t > TSi,

F (Yi,t) ≤ F (Yi,t−1) and F (Yi,t) + Li,t ≥ F (Yi,t−1) + Li,t−1. (1)

The objective is then to minimize:

max
i∈R,t∈Ti

(F (Yi,t) + Li,t), (2)

that is the space needed. For example, a valid scheduling is
shown in Figure 1 cited from [3].

The YAP was proved to be NP -hard but could be trans-
formed to the following two-stage decision [3]. In the first
stage, a unique priority σ(i) will be determined for each re-
quest Ri ∈ R, where σ(i) ∈ {1, ..., n} and σ(i) 6= σ(j) for any
j 6= i. The bigger the σ(i) is, the higher the priority of Ri

is. Then in the second stage, the optimum allocation map-
ping F can be obtained for the given σ efficiently, to mini-

1 Dept Industrial Engineering and Engineering Management, Hong
Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

2 Corresponding Author: Zhou Xu; Email: xuzhou@ust.hk

Figure 1. Five valid requests on yard, cited from [3]

mize the space needed through the following greedy method.
It allocates requests from that with the highest priority to
that with the lowest. Let Hi,t denote the maximum occupied
place in time t ∈ Ni, after all requests with higher priori-
ties than Ri have been allocated. Through a recursive algo-
rithm proposed in [3], we determine F (Yi,t) for request Ri

to be the minimum possible place that is larger than Hi,t

and that satisfies (1). Its time complexity is O(∆T ) where
∆T = max∀Ri∈R(TEi − TSi). [3] proves such an allocation
mapping minimizes the length of yard for the particular σ
given. Therefore, every σ of priorities for the n requests repre-
sents a feasible solution to the YAP problem. Let f(σ) denote
the minimum yard space to accommodate requests based on
σ. Since f(σ) can be evaluated efficiently in the above way,
to solve YAP, we only need to find the best σ of the request
priorities so that f(σ) is minimized.

For instance shown in Figure 1, the priorities of the five re-
quests from R1 to R5 can be σ(R1) = 3, σ(R2) = 5, σ(R3) =
2, σ(R4) = 1, σ(R5) = 4 respectively. According to the pri-
orities, the R2 and the R5 are firstly arranged. Afterwards,
R1 are placed just above R2, while R3 and R4 are allocated
above R1, R2, R5 lastly. This schedule leads f(σ) to be 12.

In literature, several meta-heuristics has been attempted to
seek near-optimum solution to the YAP, including simulate
annealing (SA), tabu search (TS), squeaky-wheel optimiza-
tion (SWO) [3], and genetic algorithm (GA) [2]. All of them
are limited successful for their inefficiency either in solution
quality or time performance.

This paper proposes a more effective heuristic procedure,
named critical-shaking neighborhood search (CSNS), to solve
the problem.



2 General Framework

Algorithm 1 A General Framework of the CSNS

1: Generate an initial σ0 for the n requests randomly;
2: Let σ ← σ0 and σopt ← σ0 and L ← Lmax;
3: while L > 0 do

4: Analyze the current σ to pick up a set S of k critical
requests from it;

5: Shake priorities of requests in S to generate a new σ′;
6: Call a local neighborhood search to improve σ′ to σ′′;
7: if σ′′ is better than σopt then

8: σopt ← σ′′ and L ← Lmax and σ ← σ′′;
9: else

10: if σ′′ is not worse than σ then

11: σ ← σ′′;
12: end if

13: L ← L − 1;
14: end if

15: end while

As shown in Algorithm 1, the critical-shaking neighbor-
hood search begins with an initial σ0 of priorities generated
randomly. Afterwards, an iterative improvement is made as
follows. Let σ denote the current priorities. First, we ana-
lyze the structure of σ to pick a set S of k critical requests.
Changing the priorities of those critical requests may lead an
improvement of the solution in a high probability. Because it
is difficult to determine an optimum value of the priorities for
the k critical requests, we shake their priorities randomly to
generate a new σ′ of priorities. The idea of picking and shak-
ing is similar to that of squeeze-wheel optimization (SWO)
which was first introduced by Joslin and Clements (see [4])
and applied to solve the YAP by [3]. However, the SWO in
[3] constructs a new solution by always moving the critical
request to the front, instead of shaking randomly as we do.
Experiments show that the random shaking is effective to lead
a fast convergence to solutions with high qualities. Moreover,
since the SWO in [3] picks requests that occupies extra space
against an expect limit, there is always a bias to a few re-
quests. To overcome this bias, we adopt a different policy to
pick critical requests in the following way.

Firstly, let us define the score function c(Yi,t) for each
space requirement of each request Ri according to a given
σ. Based on that, the score function for request Ri is c(Ri) =
∑

t∈Ti
c(Yi,t). Both c(Ri) and c(Yi,t) can be computed recur-

sively as follows.

c(Yi,t) =







1 if F (Yi,t) + Li,t = B,
c(Rj)/n(Rj) if j and i is consecutive,
0 otherwise.

c(Ri) =
∑

t∈Ni

c(Yi,t). (3)

Hence, the higher the c(Ri) is, the more critical the request
Ri is considered to be.

According to the score function c(Ri) of every request
Ri, a set S of k critical requests is picked in the following
way. Suppose cmax is the maximum score among c(Ri) for
all Ri ∈ R. We randomly choose k requests from those with
scores higher than ρcmax to construct S.

After shaking priorities of the picked critical requests,
we obtain a new solution σ′. To improve σ′ further, a local
search will be called. Various neighborhoods can be defined,
including the 1-swap and the 1-insert neighborhoods. To
enhance the efficiency, the size of neighborhoods is reduced
by introducing particular constraints that will have little
side-effect on the solution quality but lessen the time con-
suming a lot.

Suppose σ′′ is the improved solution from σ′ after the local
search. We update the current best solution σopt by σ′′ if σ′′

is better than σopt. And move the current solution σ to σ′′ if
the σ′′ is not worse than σ. The iterations will continue until
no improvement of σopt has been appeared for Lmax times.
To reduce the number of parameters, we set the Lmax to be
1000 in this paper.

3 Experimental Results

Extensive experiments are conducted on a Pentium IV
2.40GHZ personal computer with program coded in
C++. For testing, we adopt the nine benchmark in-
stances, which were randomly generated and shared in
http://www.comp.nus.edu.sg/fuzh/YAP by [3].

Table 1. Experimental Results

INST LB BEST GA CSNS
OBJ1 CPU2 OBJ1 CPU2

R126 21 22 24 100.67 22 2.2
R117 34 34 34 147.33 34 0.5
R145 39 39 39 261.33 39 1.56
R178 50 53 55 341.00 53 104.5
R188 74 77 79 440.33 77 153.44
R173 77 77 79 558.33 77 14.77
R250 83 85 89 1210.67 85 60.77
R236 97 98 101 817.67 98 405.2
R213 164 177 187 1440.67 177 310.83
AVG 71.00 73.56 76.33 590.89 73.56 117.09

1 indicates the length of the yard used;
2 indicates the time (in seconds) to achieve the solution of OBJ;

Table 1 summarizes the experimental results. It shows that
the CSNS over-performs the genetic algorithm (GA), which
is the best approach in literature, in terms of both higher
solution qualities and less time consumed.

REFERENCES

[1] E.K. Bish, T.Y. Leong, C.L. Li, J.W.C. NG, and D. Simichi-
Levi. Annalysis of a new vehicle scheduling and location prob-
lem. Naval Research Logistics, 48:363–385, 2001.

[2] Ping Chen, Zhaohui Fu, and Andrew Lim. Using genetic al-
gorithms to solve the yard allocation problem. In Proceedings
of Genetic and Evolutionary Computation Conference 2002,
New York City, USA.

[3] Ping Chen, Zhaohui Fu, and Andrew Lim. The yard allocation
problem. In Proceedings of the Eighteenth American Associ-
ation for AI National Conference (AAAI), 2002, Edmonton,
Alberta, Canada.

[4] D. Joslin and D. Clements. Squeaky wheel optimization. In
Proceedings of the Fifteenth American Association for AI Na-
tional Conference (AAAI), 1998, Madison, WI.

[5] A. Lim. On the ship berthing problem. Operation Research
Letters, 22:105–110, 1998.


