
High-Level Observations in Java Debugging
Wolfgang Mayer and Markus Stumptner1

Abstract. Recent years have seen considerable developments in
modeling techniques for automatic fault location in programs. How-
ever, much of this research considered the models from a standalone
perspective. Instead, this paper focuses on the properties of the test-
ing and measurement process, where capabilities differ strongly from
the classical hardware diagnosis paradigm. In particular, in an inter-
active debugging process user interaction may result in highly com-
plex input to improve the process. This work proposes an heuristic
entropy-based measurement selection algorithm, which incorporates
high-level properties of the intended behavior of Java programs, spe-
cific to a set of test cases. We show how to integrate the approach
into previously developed model-based debugging frameworks and
to how reasoning about high-level properties of programs can im-
prove fault localization.

INTRODUCTION This paper extends prior research on model-
based diagnosis for locating bugs in programs written in mainstream
programming languages (e.g. Java). The idea behind the model-based
debugging approach is (1) to automatically compile a program to
its logical model or to a constraint satisfaction problem, (2) to use
the model together with test cases and a model-based diagnostic
engine for computing the diagnosis candidates, and (3) to map the
candidates back to their corresponding locations within the origi-
nal program. Formally, given a set of test casesTC on which the
program is run, a (minimal) diagnosis is defined as a (minimal)
set of incorrectness assumptionsAB(C) on a subsetC ∈ ∆ of
componentsCOMP in the program (usually statements) such that
{AB(C)|C ∈ ∆} ∪ {¬AB(C)|C ∈ COMP \ ∆} ∪ SD ∪ TC
is consistent [7]. Here,SD is a logical theory describing the pro-
gram’s behavior under the assumption that components work cor-
rectly, TC are the values specified by a test case, andAB(C) ex-
presses that the program part modeled byC is possibly faulty (AB-
normal) and can show arbitrary effects. Since the computation de-
pends on observations in terms of test case output, unlike formal ver-
ification approaches, no separate formal specification is necessary
– everything but the test cases is computed automatically from the
source code. Conversely, where verification model checkers produce
counterexamples, the outcome of the diagnosis process are code lo-
cations. Model-based debugging thus complements, rather than re-
places verification techniques. Our more recent work (e.g., [5]) has
added models based on the Abstract Interpretation Framework [1]
and also moved to more efficient models that are based on test case
specific representation of individual traces.

DEBUGGING WITH HIGH LEVEL OBSERVATIONS While
considerable improvements in the modeling and diagnostic algo-
rithms have been achieved, the interactive aspect of (semi-) auto-
matic debugging has so far taken second seat behind the computa-

1 University of South Australia, Advanced Computing Research
Centre, Mawson Lakes, SA 5095, Adelaide, Australia. E-mail:
{mayer,mst }@cs.unisa.edu.au .

tional aspects. In particular, previous research prototypes combined
a standard debugger-like interface with a variant of the standard
entropy-based selection of measurements to identify points during
program execution where the debugger user would be queried about
the correctness of (parts of) the program status at that point in ex-
ecution (the user serving as “oracle”). The experience was that an-
swering these oracle queries posed by the system could be difficult
in many cases. To be useful for interactive debugging, an approach to
queries is needed that is both more powerful and simple for the devel-
oper (debugger user) to apply. We introduce the notion ofhigh-level
observations(HLO’s) about the expected behavior of the program.
Dedicated HLO predicates provide high level descriptions of pro-
gram execution beyond the classical diagnosis test of whether a given
part of the program state is correct or incorrect. We refer to an ob-
servation as high-level if it constrains multiple program states and/or
locations. HLO’s thus allow for debugging capabilities beyond cur-
rent modeling approaches while keeping the information that has to
be provided by the user at a minimum.

HLO’s are produced by presenting queries to the user that have
been ranked high as measurements to be selected (see below); the
query specifies a high level condition and the user provides a HLO,
or measurement outcome, by answering it. A queryQ is a condition
on the program state or actual execution that divides test casesT
into setsRT andRF that predictQ to be true and false, respectively.
Candidates inRU are those that do not predict a value forQ.

When debugging using a model that follows the program seman-
tics closely, three main causes of complex queries can be identified.
First, unless the observed variable is at a point close to the start or the
end of the program execution, the user needs to simulate much of the
programs behavior to compute the desired value. Second, frequent
switching between different execution states makes it much harder
for the user to build a model of the correct execution of a program.
This is especially true if the execution states are deep in the middle
of some complex computation. Finally, the user cannot rely on val-
ues of variables provided by the debugger, as these may have been
influenced by the true program fault or the diagnostic assumptions.
Using HLO’s, the ability to obtain a description ofintent from the
user (developer) makes observations potentially more powerful than
with hardware. Types of HLO’s include:

Traversal properties. Elements of arrays and dynamic data struc-
tures are often processed such that either all of them are read or
updated. If the underlying data structure is monotonic, this allows
to bound the number of times the iterating loop or recursive func-
tion is executed.

Read- and write-only. Read-only assertions allow to ignore any at-
tempted update to data structures passed to a loop or method call,
and exclude diagnostic candidates implying such updates. Write-
only access is used to decouple the previous from updated values
of a data structure.

Subproblem (in)dependence.Loops and recursive method invoca-
tions can be modeled differently if it is known that computations

in different loop iterations and disjunct sub-structures of dynamic
data structures are independent.

Variable (in)dependence can be utilized to infer missing state-
ments, uses and updates of wrong variables, or shortcut conflict
computation.

Loop specific invariants. Loops based on counters or other induc-
tion variables [4] can often be bounded if monotonicity of the in-
duction variable is assumed. Although it is possible to infer that
property for large classes of loops using syntactic pattern-based
and Abstract Interpretation [1] approaches, manual specification
also eliminates the fault candidate where the update expression of
the induction variable is assumed abnormal.

UML invariants. Invariants taken from UML class diagrams, such
as type constraints and cardinality constraints for relations.

Region reachability. Statements that should be executed always (or
never, or at least once) are marked to remove paths that would
otherwise contribute to spurious fault candidates.

Generating High Level Queries Queries about high-level prop-
erties are generated using an approach borrowed from the Daikon [3]
“potential invariant” detection tool. A set of properties (user-defined
and built-in) are tracked while test cases are executing, and all “in-
variants” eliminated that do not imply all properties. Statistical mea-
sures are used to discard invariants without sufficient support.

Daikon only supports forward execution, but our approach also al-
lows backward reasoning and variables with unknown values to sup-
port invariant detection even if fault assumptions are present. HLO’s
are instantiated into queries if there is a test caseT and a fault candi-
date that predictsfalse for the tracked propertyP givenT .

UTILIZING INSTANTIATED INVARIANTS The prevailing
use for inferred invariant observations(IIO’s) is to generate addi-
tional conflicts, which eliminate diagnosis candidates. Therefore, we
infer IIO’s from the correct test cases and instantiate queries only if
a particular fault candidateD violates the invariant for a test case.
This is restricted further such that all queries are discarded where the
invariants of all fault candidates agree for a test case. The aim is to
avoid uninformative queries in case the invariant is too strong due to
an insufficient number of correct test cases. IIO’s are also represented
as queries.

SELECTING MEASUREMENTS A solution for selecting good
measurements given a test case and a set of fault candidates was
presented in [2]. The algorithm utilizes entropy to find the variable
that, when observed, on average eliminates the most candidates. Only
fault probabilities for components and the values predicted by the
fault candidates are required. For the software domain, we obtain
fault probabilities from the execution paths of correct and faulty test
cases [6]. Components that are executed for few correct test cases
and many failing test runs are assigned a higher fault probability.

To integrate the HLO’s and the IIO’s into the measurement se-
lection, we define auxiliary variablesoi for each queryQi, with
dom(oi) = {true, false}. The setsRT , RF , andRU are used to
compute the entropy foroi: H(oi) = p(oi = true) log p(oi =
true) + p(oi = false) log p(oi = false) + p(RU) log 2 (H de-
notes the entropy,p(oi = v) = p(Sv) + p(RU)

2
, whereSv is the set

of selected candidates whereoi = v, andp(X) denotes the summed
probability of all fault candidates inX). Finally, the measurement
with maximal entropy is selected.

This approach (on average) optimally discriminates fault candi-
dates but proves insufficient for interactive debugging, mainly due
to the queries being too complex to answer with reasonable effort.
For interactive debugging, selected queries must also conform to the

following properties: (1) Queries that are deep in the execution trace
of a program are difficult to answer. (2) Selected queries should not
“jump around” in the execution trace, as this prohibits the user from
building a model of the correct execution of the program. (3) Subse-
quent queries should use the same test case, if possible.

To elude these problems, we propose to extend the entropy-based
measurement selection with a heuristic approach.

To minimize query complexity, for each query we compute a “dis-
tance”di between the location tested by the query and the location
of the closest answered query (or the program start or end point) for
the same test case.di is derived from the execution profile of the test
cases and all the fault candidates: Each statement that is executed for
at least one fault candidate is marked. Also, the union of all the call
graphs for each fault candidate is computed.

Starting atli, transitions between statements are explored to find
the path to an answered queryQj where the difference between the
minimal nesting depth and the maximal nesting depth is minimal.
To find the closest query, we apply a simple best-first search algo-
rithm, following only transitions between marked statements. The
nesting depth of a statement in a method is computed from the source
code. For called methods, all possible call and return transitions are
followed, according to the call graph generated earlier. The nesting
depths for each method are summed.

FURTHER WORK The approach described in this paper has pro-
vided promising results on a set of small “toy” programs, but consid-
erable issues remain for further work. Currently, the measurement
selection is not fully integrated in our debugging prototype, which
makes further evaluation difficult. Further, it is not clear whether the
parameters for the heuristic query search must be preset or if there
exist good heuristics to choose and update those values. The user
interaction aspect of interactive debugging also requires more inves-
tigation, in particular, the question on what and how much context
needs to be provided to the user to allow efficient query answering. In
contrast to other debugging and verification approaches our method
has the advantage that it does not require to specify the behavior of
the program in a formal language. Rather, it is sufficient to provide
properties and invariants that arespecific to a set of test cases, which
is usually much easier, especially as the behavioral description need
not be complete. Also, complexity is lower than for verification, as
we do not followall possible executions of a program. Instead we
focus on the program behavior specific to a set of test cases, which is
usually good enough if the test set is large.

REFERENCES
[1] Patrick Cousot and Radhia Cousot, ‘Abstract interpretation based pro-

gram testing’, inProceedings of the SSGRR 2000 Computer & eBusiness
International Conference, (2000).

[2] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’,Ar-
tificial Intelligence, 32(1), 97–130, (1987).

[3] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David
Notkin, ‘Quickly detecting relevant program invariants’, inProc.ICSE-
00, pp. 449–458, Limerick, Ireland, (June 7–9, 2000).

[4] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe, ‘Beyond induction
variables: Detecting and classifying sequences using a demand-driven
SSA’, ACM TOPLAS, 1(17), 85–122, (1995).

[5] Wolfgang Mayer and Markus Stumptner, ‘Model-based debugging us-
ing multiple abstract models’, inProceedings of the5th International
Workshop on Automated and Algorithmic Debugging, AADEBUG ’03,
pp. 55–70, Ghent, (September 2003).

[6] Wolfgang Mayer, Markus Stumptner, Dominik Wieland, and Franz
Wotawa, ‘Towards an Integrated Debugging Environment’, inProc.
ECAI, pp. 422–426, Lyon, (2002).

[7] Raymond Reiter, ‘A theory of diagnosis from first principles’,Artificial
Intelligence, 32(1), 57–95, (1987).

