
IPSS: A Hybrid Reasoner for Planning and Scheduling
Ma Dolores R-Moreno1 and Angelo Oddi2 and Daniel Borrajo3 and Amedeo Cesta2 and Daniel Meziat1

Abstract. In this paper we describeIPSS (Integrated Planning
and Scheduling System), a domain independent solver that inte-
grates an AI heuristic planner, that synthesizes courses of actions,
with a constraint-based scheduler for reasoning about time and re-
sources.IPSS is able to solve planning problems with time (prece-
dence constraints, deadline, time windows, etc) and binary resource
usage/consumption. Experimental results show that the contextual
reasoning of the planner with the constraint-based solver allows to
improve the total makespan on a set of problems characterized by
multiple agents.

1 IPSS: AN INTEGRATED SYSTEM

IPSS is a hybrid software architecture with twoparallel processes
(planning and scheduling) “collaborating” to solve the same prob-
lem relying on different representations. It is mainly subdivided in
two systems (see Figure 1):IPSS-P that corresponds to the planning
reasoner andIPSS-S that corresponds to the scheduler. On one hand,
the planner focuses on the actions selection and generates a total or-
dered (TO) plan. On the other, the scheduler focuses on the time and
resource constraints for generating a consistent schedule of the plan’s
activities. Since the maximization plan parallelism – with a conse-
quent minimization of its makespan – is a key issue in this work,
IPSS integrates a fundamental extra functionality that transforms a
TO plan (thatIPSS-P is generating), into a partial ordered (PO) plan
that the scheduler needs for generating a consistent solution.

IPSS-P. As a planner we are currently using PRODIGY [7] that
performs a bi-directional search: it begins by performing backward
search from the goals, selecting which goal to achieve, which opera-
tor to use to achieve the chosen goal, and which bindings to use for
its variables. As soon as it can apply any selected operator, it decides
whether applying it or continue subgoaling. If, at any decision point,
it applies one operator, the planner consults the scheduler for the time
and resource consistency. If the resource-time reasoner finds the plan
inconsistent, then the planner backtracks. If not, the operator gets ap-
plied, the current state is modified, and search continues. Because
the planner generates total ordered (TO) plans, this type of plans is
not appropriate if we are looking for makespan minimisation. Some
orderings of theTO plan can be eliminated through the so-calledde-
ordering of the solution.IPSShas a module that transforms the cur-
rentTO plan into aPOplan. Given that finding a deordering with min-
imum makespan is in general anNP-HARD problem [1], we follow a
greedy incremental heuristic approach to avoid searching in the space

1 Departamento de Autom´atica. Universidad de Alcal´a. Ctra Madrid-
Barcelona, Km. 33,6. 28871 Alcal´a de Henares (Madrid), Spain

2 ISTC-CNR-Italian National Research Council. Viale Marx 15, I-00137
Rome, Italy.

3 Departamento de Inform´atica. Universidad Carlos III de Madrid. Avda. de
la Universidad, 30. 28911 Legan´es (Madrid), Spain.

Figure 1. TheIPSSarchitecture.

of all possible deorderings. TheMinimal Link Deordered heuristic
tries to place the operators as near to the origin and among them as
possible – that is, it tries to minimise the makespan. This heuristic
makes the deordering algorithm be not complete. However, as the
experimental section shows, it is an effective heuristic for makespan
minimisation.

IPSS-S. The scheduling problem is represented as a Constraint
Satisfaction Problem (CSP) partitioned in two sub-problems. A ba-
sic Ground-CSP to reason on temporal constraints and aMeta-CSP
to reason on resource constraints (see the right part of Figure 1). Tem-
poral constraints are represented as a Simple Temporal Problem [2],
such that significant events, as start/end time of operators, are rep-
resented as temporal variablestpi called time points. Each temporal
constraint has the forma ≤ tpi − tpj ≤ b, wherea andb are con-
stants. Hence, the temporal constraints of the generatedPO plan (the
output from the deordering algorithm) are represented in a Simple
Temporal Network that is checked for consistency. In case of incon-
sistency, feedback could be given first to the deordering algorithm,
to ask for a different deordering and next to the planner for rejecting
the last choices and performing a higher level backtracking step.

For solving theMeta-CSP sub-problem we use the algorithm for
reasoning on binary capacity resources proposed in [5]. Under this
representation model, resource conflicts are computable in polyno-
mial time because conflicts are represented as pairs of temporally
overlapping activities that require the same resource. The algorithm
iteratively imposes ordering constraints for solving resource conflicts
between activities that require the same resource. When there is more
than one possible order it chooses as heuristic the link following the
planner logical order. Again, in case of an unsolvable resource con-
flict (e.g., no precedence posting can solve the contention) a failure
for resource inconsistency is sent to the planner that backtracks the
last decision.



2 EXPERIMENTAL EVALUATION

For the experimental settings we have used the ROBOCARE do-
main [4] that models a multi-agent system which generates user ser-
vices for human assistance. All the operations in this domain need to
be executed by an agent (robot), being all agents equal. The tasks that
robots can accomplish are: cleaning and making beds, serve meals
and accompany persons to specific rooms. In particular, each robot
is represented as a resource of unary capacity, hence one robot can-
not perform two or more operations at the same time. Also, the robot
has the skill of moving among the different rooms. So there is a path
planning problem inside the domain.

We have used twoIPSSconfigurations.IPSSworks as it has been
described before.IPSS-R is equal to the previous one, but includes the
so-calledload-balancing heuristic: the resource reasoning compo-
nent (Meta-CSP) “tells” the planner what are the less used resources,
and the planner selects these when assigning resources to operators.
This feedback has been implemented in the form ofdomain depen-
dent control rules allowing to choose different resource bindings that
minimise the makespan and at the same time avoid resource conflicts.

In order to compareIPSSagainst state of the art planners, we ana-
lysed characteristics of several planners. We wanted to compare it
against domain independent planners, so we discarded domain de-
pendent ones. Also, since we wanted to measure makespan, and
this domain is highly parallel, we also discardedTO-based planners,
given that they provide low quality solutions in this type of domains.
So, finally, we selectedLPG [3] as one of the best competitors given
its good behaviour in the domain independent part of the planning
competition, as well as its capability of generating good quality par-
allel solutions.

We have randomly generated 363 problems, increasing the number
of agents (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20). For each number of agents
we generated 3 problems with an increasing number of goals (1, 2,
3, 4, 5, 10, 15, 20, 30, 40, 50). That is, for each number of agents we
used 33 problems. The total time given to solve each problem (time
bound) was 40 seconds. Given thatLPG bases its search in a non-
deterministic local search, we have run five times each problem, and
considered the best solution, the third best solution found (median)
and the worst solution. This is represented byLPG-Min, LPG-Med (it
will be considered the baseline to compare the results) andLPG-Max
respectively.

The number of problems solved by each planner is as follows:
LPG the 100%,IPSS the 90% andIPSS-R the 85%. However, our
main concern in this paper was the ability to improve the quality of
the solutions with a reasonable solvability horizon. Here, we used
the makespan as the quality measure to compare the generated plans.
Figure 2 shows the cumulative makespan for all problems with the
same number of agents for each planner and solved by all of them.
These results are particularly interesting if we consider that the in-
creasing of the number of resources (robots in this case) severely
curtails the scale-up of existing planners [6]. In particular, the results
show the superiority of the integration of the planning and schedul-
ing approach in combination with the load balancing heuristic. The
makespan of theIPSS-R configuration is lower than the one ofIPSS

andLPG, although the time to solve the problems is relatively higher
thanLPG.

3 CONCLUSIONS

This paper introduces theIPSSarchitecture composed of two solvers
executing inparallel: a planner and a time-resource reasoner. The

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

M
ak

es
pa

n

Agents

LPG-Min
LPG-Med
LPG-Max

IPSS-R
IPSS

Figure 2. Average makespan increasing the number of agents.

experimental results show that we can increase the performance of a
planner/scheduler by considering resources separatedly from the rest
of logical predicates and trying to maximise their use, or minimise
the makespan. In addition, we have modified the default behaviour of
IPSSwhen load balancing among resources is taken into account. In-
stead of searching for plans with less number of operators (and then,
maximising the use of few resources), we maximise the use of all
the resources available (then, minimising the makespan). Therefore,
the ability to use information from the resource reasoning allows im-
provements in system performance. In the next future, we want to
test the nextIPSSversion in complex domains with multicapacity re-
sources that allows to further exploit the capabilities of the integrated
algorithms.

ACKNOWLEDGEMENTS

The first author wants to thank the ISTC-CNR group for their help
during her visit to CNR. This work was partially funded by the CI-
CYT and MCyT projects TIC2002-04146-C05-05 and a bilateral co-
ordinated project funded by Spanish and Italian Foreign Affairs De-
partments. Cesta and Oddi work is partially supported by ASI (Italian
Space Agency) project ARISCOM.

REFERENCES
[1] C. Bäckström, ‘Computational aspects of reordering plans’,Journal of

Artificial Intelligence Research, 9, 99–137, (1998).
[2] R. Dechter, I. Meiri, and J. Pearl, ‘Temporal Constraint Networks’,Arti-

ficial Intelligence, 49, 61–95, (1991).
[3] A. Gerevini, A. Saetti, and I. Serina, ‘Planning through Stochastic Local

Search and Temporal Action Graphs’,Jounal of Artificial Intelligence
Research, 20, 239–290, (2003).

[4] F. Pecora and A. Cesta, ‘Planning and Scheduling Ingredients for a
Multi-Agent System’, inProceedings of UK PLANSIG02 Workshop,
Delft, The Netherlands, (2002).

[5] S.F. Smith and C. Cheng, ‘Slack-Based Heuristics for Constraint Sat-
isfaction Scheduling’, inProcs. of the 11th National Conference on AI
(AAAI-93), (1993).

[6] B. Srivastava, R. Kambhampati, and M. B. Do, ‘Planning the Project
Management Way: Efficient Planning by Effective Integration of Causal
and Resource Reasoning in RealPlan’,Artificial Intelligence, 131, 73–
134, (2001).

[7] M. Veloso, J. Carbonell, A. P´erez, D. Borrajo, E. Fink, and J. Blythe, ‘In-
tegrating Planning and Learning: ThePRODIGYArchitecture.’,Journal
of Experimental and Theoretical AI, 7, 81–120, (1995).


