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Abstract. We briefly present theRobel supervision system3 which
learns from experience robust ways to perform high level tasks. Each
possible way to perform a task is modeled as a Hierarchical Tasks
Network whose primitives are sensory-motor functions. The rela-
tionship between supervision states and the appropriate modality is
learned through experience as a Markov Decision Process (MDP).
This MDP is independent of the environment and characterizes the
robot abilities for the task.

Presentation

Robust robot navigation is a complex task which involves many
sensory-motor (sm) functions such as localization, path planning, ter-
rain modeling, motion generation adapted to obstacles, and so on.
Since no single method or sensor has a universal coverage, eachsm
function has its specific weak and strong points. The approach pre-
sented here improves the global robustness of complex tasks execu-
tion in taking advantage of thesesmfunctions complementarity.

We propose a two-stepped approach namedRObot BEhavior
Learning. First,sm functions are synthetized in a collection of Hi-
erarchical Tasks Networks (HTN) [2], that are complex plans called
modalities. Each modality is a way to achieve the desired task. The
second contribution of this work is an original approach for learning
from the robot experiences an MDP-based supervision graph which
enables to choose dynamically the most appropriate modality to the
current context. We thus obtain a system able to efficiently use re-
dundancies of low-levelsmfunctions to robustly perform high-level
tasks.

1 Synthesis of Modalities

A high level task given by a mission planning step requires an inte-
grated use of severalsm functions. Each consistent combination of
thesesm functions is a particular plan called amodality, one way
of performing the task. A modality has specific characteristics that
make it more appropriate for some contexts or environments, and
less for others. The selection of the right modality is performed by
thecontroller (see Section 2) all along the task execution.

We chose to represent modalities as Hierarchical Task Networks
because of their expressiveness and their flexible control structure.
HTNs offer a middle ground between programming and automated
planning, thus we can use the same formalism to write a modality by
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hand or to generate it automatically from a few information on how
the sm work (e.g. their inputs and outputs, the resources they use,
time, synchronization. . . ). The next challenge is to learn to use them
efficiently.

2 The Controller

We present in this section an example of a controller adapted to an
indoor navigation task. To perform this task, the design of the control
space and the control process itself requires the use of a topological
graph. Cells are polygons that partition the metric map. Each cell
is characterized by features such asCorridor, Large Door, Narrow
Door, Confined Area. . .The controller has to choose a modality that
is most appropriate to the current execution state for pursuing the
task. In order to do this, a set ofcontrol variableshas to represent
control information for thesmfunctions. The choice of these control
variables is an important design issue.

For example, in the navigation task in an indoor environment, the
control variables are thecluttering of the environment, theangular
variation of the profile of the laser range data, theinaccuracy of
the position estimate, the confidencein the position estimate, the
navigation color (in a topological graph) and thecurrent modality .

A control state is characterized by the discretized values of these
control variables. We finally end-up with a discrete control space
which allows us to define acontrol automaton. The control automa-
ton is nondeterministic: unpredictable external events may modify
the environment, e.g. someone passing by may change the value of
one of the variables. Therefore the execution of the same modality in
a given state may lead to different adjacent states.

The Control automatonΣ is a Markov Decision Process. As an
MDP, Σ could be used reactively on the basis of a universal policy
π which selects for a given states the best modalityπ(s) to be ex-
ecuted. However, such a universal policy will not take into account
the current navigation goal. A more precise approach takes into ac-
count explicitly the navigation goal, transposed intoΣ as a setSg

of goal states in the control space. This setSg is given by a look-
ahead mechanism based on a search for a path inΣ that reflects a
topological route to the navigation goal.

Goal States in the Control Space

Given a navigation task, a search in the topological graph provides an
optimal router to the goal, which is characterized by the sequence
of colors of traversed cells, and its length.

Now, a path between two states inΣ defines also a sequence of
colorsσpath, those of traversed states; it has a total cost, that is the
sum

∑
path

C(a, s, s′) over all traversed arcs. A path inΣ from the



current control states0 to a states corresponds to the planned route
when the pathmatchesthe route(σr, lr) in the following way:

• σpath corresponds to the same sequence of colors asσr with pos-
sible repetition factors; this requires that we will be traversing in
Σ control states having the same color as the planned route.

•
∑

path
c(a, s, s′) ≥ Klr, K being a constant ratio between the

cost of a state-transition in the control automaton to corresponding
route length; this condition enables to prune paths inΣ that meet
the condition on the sequence of colors but cannot correspond to
the planned route.

Let route(s0, s) be true whenever the optimal path inΣ from
s0 to s meets the two previous conditions, and letSg = {s ∈
S | route(s0, s)} (built using a Moore-Dijkstra algorithm starting
from s0). It is important to notice that this setSg of control states is
a heuristic projectionof the planned route to the goal. There is no
guarantee that following blindly a path inΣ that meetsroute(s0, s)
will lead to the goal, and there is no guarantee that every success-
ful navigation to the goal corresponds to a sequence of control states
that meetsroute(s0, s). This is only an efficient and reliable way of
focusing the MDP cost function with respect to the navigation goal
and to the planned route.

Finding a Control Policy

At this point we have to find the best modality to apply to the current
states0 in order to reach a state inSg, given the probability distri-
bution functionP and the cost functionC. A simple adaptation of
theValue Iterationalgorithm solves this problem. Here we only need
to know π(s0). Hence the algorithm can be focused on a subset of
states, basically those explored by the Moore-Dijkstra algorithm.

The closed-loop controller uses this policy as follows:

• the computed modalityπ(s0) is executed;
• the robot observes the states, it updates its router and its setSg

of goal states, it finds the new modality to apply tos.

This is repeated until the control reports a success or a failure. Re-
covery from a failure state consists in trying from the parent state an
untried modality. If none is available, a global failure of the task is
reported.

Estimating the Parameters of the Control automaton

A sequence of randomly generated navigation goals is given to the
robot. During its motion, new control states are met and new tran-
sitions are recorded or updated. Each time a transition froms to s′

with modality a is performed, the traversed distance and speed are
recorded, and the average speedv of this transition is updated. The
cost of the transitionC(a, s, s′) can be defined as a weighted average
of the traversal time for this transition taking into account the even-
tual control steps required during the execution of the modalitya in
s together with the outcome of that control. The statistics ona(s) are
recorded to update the probability distribution function.

3 Experimental results

The justification of the whole system relies on the following princi-
ple : the use of the complementarity of several navigation modalities
increases the global robustness of the task execution. To validate this
principle, 5 handwritten modalities have been integrated on board
our XR4000 robot. In order to characterize the usefulness domain

of each modality, we measured in a series of navigation tasks, the
success rate and other parameters such as the average speed, the dis-
tance covered, the number of retries. Various cases of navigation have
been considered such as for instance, long corridors or large areas,
cluttered or not, occluding the 2D characteristic edges of the area
or not. These extensive experiments required several kilometers of
navigation. The result is that for each case of navigation met by the
robot there is at least one successful modality. On the other hand, no
modality is able to cover all cases. This result clearly supports our
approach of a supervision controller switching from one modality to
another one according to the context.

We propose here to illustrate the learning capabilities of the con-
troller through an indoor navigation task. To perform this experiment,
we start with an empty automaton and 2 complementary modalities
(M1, M2). The learning starts with a series of 83 navigations in a
large open environment. The constant selection ofM1 by π all along
the 30 last navigations shows that the controller relevantly learned
the superiority ofM1 on M2 for the open environments. Some nar-
row obstacles are added. If in the previous phase,M1 was more ap-
propriate thanM2, in this second phase, the system is able to learn
within 30 navigations, the better efficiency ofM2 in cluttered en-
vironments. The goal of the third step is to check if the learning of
the second phase (avoidance) didn’t corrupt the learning of the first
phase (open navigation). The obstacles are then removed to recover
the same environment as the phase 1 and 58 more navigations are
performed by the system. This last step shows that the efficiency of
M1 in the phase 1 has not been forgotten after the learning of the
phase 2.

Conclusion

This paper addressed the issue of producing complex modalities from
sensory motors functions, and how to exploit the complementarity of
these modalities to perform a task.

We would like to emphasize two particular features of our method:
Portability: Control state variables reflect control information for

the sm functions. No information dedicated to the environment is
present in the control state. Thanks to this, a controller learned in an
environment can directly be used in another environment.

Adaptativity: In this system, learning and execution are not de-
coupled : learning ofΣ parameters is active all along the robot nav-
igations. If a new situation is encountered, corresponding new states
are created and the new untried transitions are taken into account
by the next computations. This unsupervised learning confers a high
level of adaptativity to the controller.

In addition to future work directions mentioned above, an impor-
tant test ofRobel [1] will be the extension of the set of tasks to ma-
nipulation tasks such as“open a door”. This significant development
will require the integration of new manipulation functions, the syn-
thesizing of new modalities for these tasks and the extension of the
controller state. Another development which seems rather promising
is to learn the control space of the controller instead of relying on
one given by hand.
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