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Abstract. We improve the efficiency of Sampath’s diagnoser ap-
proach by exploiting compact symbolic representations of the system
and diagnoser in terms of BDDs. We show promising results on test
cases derived from a telecommunication application.

1 INTRODUCTION

A well-known approach to the diagnosis of discrete-event systems
compiles, off-line, a centralised system model into another finite
state machine, called diagnoser, which efficiently maps observations
to possible failures [2]. While this approach exhibits excellent on-
line performance, the space required by the centralised model, let
alone that required by the diagnoser, constitutes a major problem.
We aim to avoid this problem by representing and computing Sam-
path’s diagnoser [2] symbolically, using compact representations of
boolean functionsBn 7→ B as binary decision diagrams (BDDs) [1].
Starting from a symbolic representation of the system components
in terms of BDDs, we compute the corresponding global model, ab-
stract this model and retrieve the symbolic diagnoser using symbolic
algorithms. The next 3 sections formally define these models and
give their symbolic representation. Their symbolic computation pre-
sented in the full paper [4], to which we refer for details.

2 COMPONENT AND GLOBAL MODELS

Let Gi = 〈Xi,Σo,Σu,Σf , x0i , Ti〉, i ∈ {1, . . . , n}, be a com-
ponent model characterised by its statesXi = {x1i , . . . , xmi}, its
eventsΣ = {σ1, . . . , σp} which are observable (Σo) or unobserv-
able (Σu), its failure eventsΣf ⊆ Σu, its initial statex0i , and its
transition relationTi ⊆ Xi × Σ×Xi. For simplicity of the presen-
tation and without loss of generality, we assume that all components
share the same event setΣ. The thesis [3] shows how to handle
events that are local to components. Symbolically, each component
is encoded as2 Gi = 〈bXi , bX

′
i , bΣ, Xi,Σo,Σu,Σf , x0i , Ti〉,

where bXi = {bx1i , . . . , b
x
dlog2 miei} are the state vari-

ables, bX
′

i = {bx
′

1i , . . . , b
x′

dlog2 miei} are the target variables,

bΣ = {bσ1 , . . . , bσdlog2 pe} are the event variables,Xi is the boolean

function over bXi characterising the states,Σo, Σf , and Σu are
the boolean functions overbΣ characterising the observable, unob-
servable, and failure events,x0i is the boolean function overbXi
characterising the initial state, andTi is the boolean function over
bXi ∪ bΣ ∪ bX

′
i characterising the transition relation.

The global modelG = 〈X,Σo,Σu,Σf , x0, T 〉 with its state set
X, its sets of observable, unobservable and failure eventsΣo, Σu and
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Σf , its initial statex0 and its transition setT = {(x1, . . . , xn)
σ→

(x′1, . . . , x
′
n) | ∀i ∈ 1 . . . n, xi

σ→ x′i ∈ Ti}, is defined as the
synchronous composition of the component models. Its symbolic
representation isG = 〈bX , bX

′
, bΣ, X,Σo,Σu,Σf , x0, T 〉, where

bX = ∪ni=1b
X
i , bX

′
= ∪ni=1b

X′
i , X = ∧ni=1Xi, x0 = ∧ni=1x0i and

T = ∧ni=1Ti. The latter conjunction implements strong synchronisa-
tion by guaranteeing that the event variables, which are shared across
components, have consistent values.

For example, consider the global model depicted in Figure 1: let
enc(u1) = bσ1 ∧ bσ2 ∧ bσ3 , enc(x1) = bx1 ∧ bx2 ∧ bx3 andenc(x′2) =

bx
′

1 ∧ bx
′

2 ∧ b
x′
3 denote the encoding of eventu1, and statesx1 and

x′2 respectively. The transitionx1
u1→ x′2 can then be encoded as

enc(x1) ∧ enc(u1) ∧ enc(x′2), and BDD can be generated from the
disjunction of all transitions which represents the component.

3 ABSTRACTED MODEL

To speed up the computation of the diagnoser, we first abstract the
global model, noting that the diagnoser does not depend on unobserv-
able events which are not failures, on the order of successive failures,
and on the global states encountered within a sequence of unobserv-
able events. The abstracted model consists only of those states that
are the origin or target of an observable transition (and of the initial
state). It has two types of transitions: (1) the observable transitions
of the global model, and (2) the failure transitions, each of which is
labelled with asetof failure events that has occurred on some path
from the transition’s origin state to its target state (see Fig. 1).

The abstracted model is̃G = 〈X̃,Σo, F̃ , x0, T̃o, T̃F 〉: the states
areX̃ = {x0} ∪ {x ∈ X | ∃σ ∈ Σo,∃x′ ∈ X s.t.x

σ→ x′ ∈
T or x′

σ→ x ∈ T}, the failure labels arẽF = 2Σf , the observable
transitions arẽTo = {x σ→ x′ ∈ T | σ ∈ Σo ∧ x, x′ ∈ X̃}, and the
failure transitions̃TF ⊆ X̃ × F̃ × X̃ are defined as follows:

{x1
l→ xk | (∃x, x′ ∈ X̃,∃σ, σ′ ∈ Σ̃o such that

(x1 = x̃0 or x
σ→ x1 ∈ T̃o) andxk

σ′→ x′ ∈ T̃o),
and(∃σ1 . . . σk ∈ Σu,∃x2 . . . xk−1 ∈ X such that

∀j = 1 . . . k, xj
σj→ xj+1 ∈ T

andσj ∈ l iff σj ∈ Σf )}

Symbolically, G̃ = 〈bX , bX
′
, bΣ, bF , X̃,Σo, F̃ , x0, T̃o, T̃F 〉 is

encoded using the same boolean variables as the global model and
an additional|Σf | variablesbF = {bf1 , . . . , b

f
|Σf |
} needed for the

failure transition labels iñF . There is a one to one correspondence
between failure events and these variables. A failure transition label
is encoded as a conjunction of literals overbF whose signs depend on
whether the corresponding failure belongs to the label. For instance,
the failure label{f1} of the abstracted model shown in Figure 1 is

encoded asenc({f1}) = bf1 ∧ b
f
2 .
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Figure 1. Global model (top) and its abstraction (bottom).
Σu = {u1},Σf = {f1, f2},Σo = {o1, o2}

4 DIAGNOSER

A diagnoser is a deterministic finite state machine whose transitions
correspond to observations and whose states correspond to the sys-
tem states and failures that are consistent with the observations. More
explicitly, its transitions are labelled with observable events, and its
states are labelled with sets of pairs(v, l) denoting a state and a fail-
ure label of the abstracted model. On-line, the diagnoser efficiently
maps observations to the possible system states and failures: it suf-
fices to follow the path labelled by the actual observations and look
up the label of the resulting diagnoser state.

LetV = {x̃0}∪{x′ ∈ X̃ | ∃σ ∈ Σo,∃x ∈ X̃ s.t.x
σ→ x′ ∈ T̃o}

be the set of target states of observable transitions. The diagnoser is
Ĝ = 〈X̂, Π̂,Σo, x̂o, R̂, T̂ 〉, whereX̂ = {x̂1, . . . , x̂q} is the set of
diagnoser states,̂Π = V × F̃ is the set of pairs that can belong to
diagnoser state labels,x̂0 is the initial diagnoser state,̂R ⊆ X̂ × Π̂
is the diagnoser state labelling relation which associates a state to
the pairs in its label and verifieŝR(x̂0) = {(x̃0, ∅)} (by abuse of
notation, we use the function notation̂R(x̂) for the label of statêx),
and T̂ ⊆ X̂ × Σo × X̂ is the set of diagnoser transitions, which
verify: x̂

σ→ x̂′ ∈ T̂ iff

R̂(x̂′) = {(v′, l′) | ∃(v, l) ∈ R̂(x̂) such that
eitherv

σ→ v′ ∈ T̃o andl′ = l,

or ∃v l′′→ v′′ ∈ T̃F and∃v′′ σ→ v′ ∈ T̃o andl′ = l ∪ l′′}

Ĝ = 〈bS , bS
′
, bX , bX

′
, bΣ, bF , X̂, Π̂,Σo, x̂o, R̂, T̂ 〉 is the sym-

bolic diagnoser. It is encoded using the same boolean variables
as the abstracted model, with an additional2dlog2 qe variables
bS = {bs1, . . . , bsdlog2 qe} and bS

′
= {bs

′
1 , . . . , b

s′

dlog2 qe} needed to
encode theq diagnoser states. A complication here is that the number
q of diagnoser states, and therefore the number of variables needed, is
a priori unknown. In the worst caseq = 2|Π̂| and therefore2|V ||F̃ |
new variables are theoretically needed. However, in practice,q will
be much smaller and introducing that many variables will lead to an
unnecessarily costly representation. To remedy this, we start with one
single variable to encode the initial diagnoser state, and continually
increase the number of variables, as needed during execution. Every
time a new variablebsj is needed, we update all BDDs containing

variables inbS (resp.bS
′
) by conjoining them with¬bsj (resp.¬bs

′
j ).

The diagnoser is described using two BDDs: one to represent the
transitions over the variablesbS ∪ bS

′
∪ bΣ and one to represent the

information of the individual states using the variablesbS ∪ bX ∪ bF .

5 RESULTS

Our approach has been implemented on top of the CUDD BDD pack-
age [5]. We present empirical evidence that our diagnoser represen-
tation yields important gains in space, taking a system consisting of

a switch and two different control stations of a telecommunication
network as example.

In this example, there are 9 observable events, 11 failure types,
and 8 other unobservable events. The switch model has 12 states and
18 transitions, the primary control station 13 states and 15 transi-
tions and the backup control station 19 states and 28 transitions. This
yields a global model of 1062 states and 2911 transitions. To observe
how the two approaches scale, we considered “lighter” versions of
the example, where groups of failure types are fusioned. This yields
5 versionsV1 . . . V5, with a number of failure types ranging from 3
to 11. Table 1 depicts the version’s diagnoser properties and its size.

Table 1 Diagnoser properties

V1 V2 V3 V4 V5

States 353 921 2500 4355 18474
Transitions 2183 5774 16530 31024 120698

space symb. (Kb) 126 322 903 1696 7916
space enum. (Kb) 451 1531 7054 15851 172089

The superiority of the symbolic method increases with the model
size, and exceeds an order of magnitude for the largest version. From
the results, it can be conjectured that the space requirements of the
symbolic approach for large models will often only represent a ne-
glectable portion of those of the enumerative setting. In [4], we make
a similar observation about the time needed to generate the diagnoser.

It is also worth mentioning that the symbolic representation ap-
pears to preserve the real-time property of the diagnoser for on-line
diagnosis: there was little variation in diagnosis time across the dif-
ferent example versions and the time taken to treat 1000 observations
never exceeded 100 ms.

6 CONCLUSION AND FUTURE WORK

We have presented a symbolic framework based on BDDs for the di-
agnosis of discrete-event systems. It enables the synthesis of a sym-
bolic version of Sampath’s diagnoser [2], while requiring consider-
ably lower space and time than the enumerative approach. This re-
sults from the fact that BDDs are suitable to compactly represent the
large sets of system states and failures labelling the diagnoser states.

Our framework is not limited to fault diagnosis using diagnosers.
In [3], we also give algorithms for checking diagnosability, as well
as fault diagnosis algorithms based on all the models presented here.
Our research agenda includes improving our results by experiment-
ing with alternative encodings described in [3], dedicated heuris-
tics for variable ordering. We also plan to extend our framework to
stochastic system diagnosis using algebraic decision diagrams (see
e.g. [5]). Finally, we shall investigate the use of symbolic representa-
tion in the context of decentralised diagnosis.

REFERENCES
[1] R. E. Bryant, ‘Graph-based algorithms for boolean function manipula-

tion’, IEEE Transactions on Computers, C-35(8), 677–691, (1986).
[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and

D. Teneketzis, ‘Failure diagnosis using discrete event models’,IEEE
Transactions on Control Systems Technology, 4(2), 105–124, (1996).

[3] A. Schumann,Is symbolic technology applicable to the diagnosis of dis-
crete event systems?, Master’s thesis, University of Rostock, 2003.
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