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Abstract. This research examines the application of perception-
based reasoning methods [11],[12] to the problem of training. In par-
ticular, focus is on how to determine the reason for a learner failing
to complete a task. Importantly, the aim is to be able to identify areas
of knowledge that are linked to task failure in some specified way,
such as missing knowledge and misconceptions. The term cognitive
diagnosis is used to refer to the process by which blame for task fail-
ure can be assigned, and Zadeh’s computational theory of perception
is adopted as the basis for the diagnostic capability.
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1 INTRODUCTION

Qualitative reasoning is generally accepted as an appropriate method
for constructing model-based systems able to perform cognitive diag-
nosis. Qualitative representation and reasoning capture the way peo-
ple deal with and manage within the world [2], though these tech-
niques are complimented by quantitative methods where the latter
are more appropriate. In [3], for example, a combination of quali-
tative constraints and numerical reasoning is used to detect physi-
cally impossible designs students may produce in thermodynamics.
The reason for employing numerical reasoning, as described in [1], is
that the calculi underlying qualitative reasoning are relatively weak,
and therefore limit its applicability. The computational theory of per-
ception (CTP) complements qualitative representation in providing a
further mode of information granulation. While numerical data are
singular and qualitative data are c-granular, information is also per-
ceived by people as f-granular (c, crisp as opposed to f, fuzzy). More-
over, CTP is a reasoning method able to process information in all
three modes of granulation, including the qualitative mode, through
the use of generalized constraints. The contribution of the CTP to
the capability of qualitative methods to process and reason with per-
ception based information will allow reformulation of performance
analysis.

Research reported here is ongoing and covers areas ranging from
representation of domain knowledge using generalized constraints,
through corresponding representation of students’ knowledge (stu-
dent modelling) using the notion of perceptions to address the fact
that a model of a student is only a representation of their perceptions
of the target domain knowledge. This is made possible with the in-
troduction of CTP. The central objective, however, is to develop a
diagnostic component that is compatible with the perception based
approach to student modelling. In this paper, coverage is limited to
the representation of domain knowledge.
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2 DOMAIN REPRESENTATION

Although there are clearly many ways to categorize knowledge, this
research distinguishes between conceptual knowledge and problem-
solving knowledge. Several types of problem-solving knowledge are
further defined, and sub-types within the more general types. Struc-
tural knowledge captures taxonomic and compositional dependen-
cies. Taxonomic knowledge communicates type subtype subordina-
tion and inheritance of properties between objects. Compositional
relations provide information about the elements of an object. Be-
havioural knowledge is accounted for by a number of sub-types,
where the strength of dependency increases from temporal and co-
occurrence, through correlation and enablement, to teleological and
causal relations. Suitable techniques are applied to model each type
of relation. Diverse modelling techniques have been considered in
[9] - from logic and rules, along causal networks and Petri nets, to
equations - and then associated with the relational types. It is shown
that the association modelling technique relational type is many-to-
many rather than one-to-one or all-to-all. Every model stands for a
piece of problem-solving knowledge, and a model description is only
complete if also indicating the relational type. Furthermore, modifi-
cations of each modelling technique are considered to investigate a
problem’s tolerance toward imprecision, or the benefits from impre-
cise modelling in terms of tractability, low-cost solution, achieving
a solution when no precise information is available, etc. Effectively,
this introduces another type of problem solving knowledge - impre-
cise knowledge. As its sub-types, we adopt the relational types de-
fined in [11],[12]: equal, possibilistic, veristic, probabilistic, proba-
bility value, usuality, random set, random fuzzy set, and fuzzy graph.
Notably, increasing the depth of imprecision, it is necessary to intro-
duce generalized constraints in problem description, as a generaliza-
tion of model representation.

As a result, the problem-solving knowledge involving each con-
cept can be described with a set of models arranged in a multi-model
space along various modelling dimensions [5],[4], where a model is
characterized with its depth in each dimension representing a per-
spective or level of concept definition. In this research, the follow-
ing four dimensions are considered: scope, resolution, generality and
imprecision. Scope and resolution correspond to the various classes
or levels of taxonomic and compositional knowledge, respectively.
A higher taxonomy class is consistent with a broader problem scope,
and a more detailed compositional level communicates increased res-
olution. Generality is the dimension along the behavioural types of
knowledge, as the stronger relations as causal and teleological tend
to rely on more abstract domain principle, while the weaker relations
as co-occurrence and temporal involve more specific knowledge like
procedures. Imprecision is the dimension exploring the reasonable
imprecision in domain representation. The number of relational types
involved along this perspective, and therefore its depth, will increase
from technical, through industrial and medical, to financial and so-



cial domains. Furthermore, the representation along the imprecision
perspective requires the use of generalized constraints [11,12] rather
than models.

X isrimprecision R (1)

rimprecision ε {e, d, v, p, λ, u, rs, rfs, fg}
e : equal

d : possibilistic

v : veristic

p : probabilistic

λ : probability value

u : usuality

rs : random set

rfs : random fuzzy set

fg : fuzzy graph

Here,X is a constrained variable,R is a modelled constraining rela-
tion, isrimprecision is a variable copula defining the way in whichR
constrainsX, and thusrimprecision is an indexing variable standing
for the relational type.

It is necessary to introduce a unifying structuring principle within
the domain space. The information along the first three dimensions
can be represented using multiple models. The knowledge along
the forth dimension can be represented through multiple general-
ized constraints. Every model can be described as a generalized con-
straint, while a generalized constraint may not be translated directly
or uniquely as a model. Therefore, the introduction of the forth di-
mension requires the use of multiple generalized constraints as repre-
sentation elements throughout the domain space. The transformation
of the models along the perspectives of scope, resolution and gen-
erality, to generalized constraints will be performed to be consistent
with the idea that a problem’s description is only complete if also
indicating the relational type. An analogy with the notation in (1) is
kept in definitions (2), (3) and (4).

X isrgenerality R (2)

rgenerality ε {t, co, c, en, te, ca}
t : temporal

co : cooccurrence

c : correlational

en : enablement

te : teleological

ca : causal

X isrscope R, rscope ε {taxonomy classes} (3)

X isrresolution R, rresolution ε {compositional levels} (4)

Then we can introduce the description of a generalized constraint in
the domain space as

X isrresolutionrscopergeneralityrimprecision R (5)

rresolution ε {compositional levels}
rscope ε {taxonomy classes}

rgenerality ε {t, co, c, en, te, ca}
rimprecision ε {e, d, v, p, λ, u, rs, rfs, fg}

Thus (5) also represents the structuring principles in the multi-
perspective multi-constraint domain framework. The representation
framework may be instantiated in various target domains.

3 FURTHER RESEARCH
Constructing the domain representation framework is the first step
in the overall diagnostic task. An important point is the introduction
of the dimension of imprecision. We show in [8],[7] how a domain
problem may benefit from exploiting the forth dimension in its repre-
sentation and solution. The range of domain problems is broaden up
in [9]. Future work involves building a complete application in the
financial domain, and testing the ideas presented here.

The next step is to develop a corresponding student representation,
and to show how it is supported by the domain framework. There will
be three principles in exploiting the domain constraints - learner de-
scription isconstraint-choice dependent, experience relatedandper-
ception based. Thus, ’hovering over’ or ’jetting through’ the domain
structure and exploring the multifaceted representation of problem-
solving knowledge, it is possible to develop a flexible student de-
scription. It will be based on multiple generalized constraints and
will reflect the student’s perception of domain knowledge. Thus the
domain framework will act as an explanatory database for the student
representation.

Beyond the domain framework and the student description, an im-
portant objective is the design of a diagnostic strategy to perform
the blame assignment for task failure on specific knowledge. The
strategy will involve generalized constraint propagation, which is the
reasoning engine in the computational theory of perceptions.
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