
Variants of A* for Planning
Minh Tang & Amol Dattatraya Mali�

Abstract. Many of the recently developed efficient planners use
a variation of A* search algorithm called weighted A*. We report
on three sound and complete forward state-space STRIPS planners
AWA*-PD, AWA*-AC and AWA*-AC-LE. AWA*-AC is adjusted
weighted A* with action conflict-based adjustment. AWA*-PD is
adjusted weighted A* with deleted preconditions-based adjustment.
AWA*-AC-LE is a variant of AWA*-AC which performs lazy evalu-
ation (LE). The novel ideas in these planners are (i) node-dependent
weighting for g(n) and h(n) terms in the path cost equation of A*,
(ii) conditional two-phase heuristic evaluation, and (iii) lazy heuristic
evaluation which does not construct relaxed plans to compute heuris-
tic values for all nodes. We report on an empirical comparison of the
planners with planners HSP-2 and FF on new challenging domains
containing dead ends. Our evaluation shows that heuristic search
planning is significantly benefitted by node-dependent weighting,
conditional two-phase heuristic evaluation and lazy evaluation.

Significant advances have occurred in heuristic search planning in
the last seven years. These are clear from the success of planners FF
[3] and HSP-2 [1]. FF carries out local search or weighted A* (WA*)
search, depending on the version chosen. HSP-2 carries out WA*
style search. WA* style search has been also used by planner Sapa
[2]. HSP-2, Sapa and FF keep the weight in WA* fixed throughout
the search. Using different weights for different nodes can provide
better search control without loss of completeness and without sig-
nificant loss of optimality.

Current planners use the same heuristic/heuristics to evaluate all
nodes in the fringe. Using the same heuristic to evaluate all nodes in
the fringe can be highly disadvantageous. If the heuristic values can-
not be computed fast, solving time increases, with more nodes in the
fringe. If the heuristic is not very informative, evaluating all nodes
in the fringe with the heuristic may not be useful. More informa-
tive heuristics are generally computationally demanding. So one can
use a computationally cheap heuristic for all nodes in the fringe (in
phase 1) and use a more informative heuristic to re-evaluate a small
number of the nodes in the fringe (in phase 2), in order to perform a
fast and more informative heuristic evaluation. Our conditional two-
phase heuristic evaluation is based on this idea.

Using the same computational process to evaluate all nodes can
slow down a planner. Plan synthesis may become efficient if some
nodes are evaluated with a computationally very cheap process. This
can be done even when the heuristic evaluation is uni-phase. Hence
this differs from conditional two-phase heuristic evaluation. Specif-
ically, some nodes can be evaluated only with heuristic �� and the
remaining nodes can be evaluated only with heuristic �� which can
be used much faster than ��. One approach is to use the informa-
tion about already-evaluated siblings of a node � or randomization,
to decide whether to evaluate � with ��. Such a lazy evaluation can

� EE & CS, University of Wisconsin, Milwaukee, WI 53211, USA, min-
htang@uwm.edu, mali@miller.cs.uwm.edu

speed up planning since it reduces the time spent on nodes’ evalua-
tion. AWA*-AC-LE uses this kind of evaluation.

We report on three sound and complete classical planners AWA*-
AC, AWA*-PD and AWA*-AC-LE in this paper. The conditions for
their completeness are same as the conditions for the completeness
of A* (finite branching factor and positive step costs). These planners
use variations of the WA* search algorithm. All these planners use
node-dependent weights for the ���� and ���� terms in the path cost
equation. They also use conditional two-phase heuristic evaluation.
AWA*-AC and AWA*-PD differ from each other due to different in-
formation used in the second phase of conditional two-phase heuris-
tic evaluation. AWA*-AC-LE is obtained by integrating lazy evalu-
ation with AWA*-AC. AWA*-AC and AWA*-PD find relaxed plans
for all nodes in the fringe, to compute the heuristic value. AWA*-
AC-LE decides whether to compute relaxed plan for a node based on
the heuristic values of its siblings and a randomly generated number.
AWA*-AC-LE does not find relaxed plans for all nodes in the fringe,
thus performing a lazy heuristic evaluation. The variants of A* out-
perform FF and HSP-2 on several problems from domains TSP-2n
and TSP-3. These domains contain dead ends.
Conditional two-phase heuristic evaluation: This differs from the
combination of heuristics in the pattern database approach [4]. The
nodes to be evaluated in the second phase are selected based on the
evaluation from phase 1. Hence the evaluation in second phase is
“conditional”. The second phase may detect less promising nodes
that phase 1 did not. This idea can be extended to conditional multi-
phase heuristic evaluation.
Considering information ignored in the computation of relaxed
plans: Information ignored in the construction of relaxed plans can
be used in the future phases of multi-phase heuristic evaluation.
AWA*-AC, AWA*-PD and AWA*-AC-LE use some information ig-
nored in phase 1 evaluation in phase 2. These three planners ignore
delete effects of actions in the synthesis of relaxed plans in phase 1
and consider the delete effects in phase 2. This can help in efficient
plan synthesis, as our results show.

The variants of A* use the following path cost equation: ���� �
���� � ���� � ���� � ����, where ���� and ���� are functions of
the current state (world state in node �). In the implementations of
AWA*-AC, AWA*-PD, and AWA*-AC-LE, we chose the functions
���� and ���� as follows: ���� � �� , and ���� � �� �

����
Æ�����

	

where �� 	 ��	 and Æ� are positive user-specified constants,
��� is
the number of subgoals from � true in state in node �, and � � �
is the number of subgoals (propositions or predicates) in the goal of
the planning problem. We require �� � �

Æ�
so that ���� is always

positive.
Algorithm of AWA*-AC: is a user-specified positive constant.
PAD-mutex actions are those whose mutual exclusivity can be in-
ferred simply by comparing preconditions, add effects and delete ef-
fects.

1. Evaluate all nodes in the fringe whose � value was not found, by
computing ����, where ���� = number of actions in the relaxed plan
at �.
2. For all nodes in the fringe � If ���� � , and � was not evaluated
in second phase before, then ���� = ���� + (Total number of pairs
of concurrent PAD-mutex actions in the relaxed plan at �) �.
3. For all nodes in the fringe whose � value has not been found,
compute
���� � �� � ���� � ��� �

����

Æ�����
� � ����

4. Expand node in the fringe with lowest ��� value.
5. Go to 1 if no plan is found.
6. Return plan.
Algorithm of AWA*-PD: This variant of AWA*-AC was created to
evaluate another adjustment strategy in phase 2 of conditional two-
phase heuristic evaluation. AWA*-PD differs from AWA*-AC only
in second step. The adjustment in second phase is the total number
of preconditions of actions in the relaxed plan at � that are deleted
by some preceding action in the relaxed plan.
Algorithm of AWA*-AC-LE: AWA*-AC-LE decides whether to
compute relaxed plan for a node based on the number of its interest-
ing and less interesting siblings and a randomly generated number.
AWA*-AC-LE is motivated by the intuition that constructing relaxed
plans for fewer nodes may speed up plan synthesis significantly.
��������� is parent of node �. �� is the limit for number of

interesting siblings. �� is the limit for the number of less interest-
ing siblings. �� is � th child of node �. A node � is interesting if
���� � ������������. A node � is less interesting if ���� �

������������. � denotes the user-specified positive constant used
to compute the � value of a node fast. ����� is the number of inter-
esting siblings of node �. ������ is the number of less interesting
siblings of node �. � is a user-specified positive integer used in de-
ciding whether to compute relaxed plan for a node. �� and �� are
user-specified.
1. Expand root node. Find the � value for root node using relaxed
plan heuristic.
2. Let � be the most recently expanded node. Let � be the number of
children of �. If � � ������	 ���, then evaluate all children using
relaxed plan heuristic.
3. If � � ������	 ���, then evaluate first ������	 ��� children
using the relaxed plan heuristic. (Note: � th child of � is the � th node
generated while expansion of �.)
4. For � � �������	 ��� � �� to �
�
If (������� � ��� � �������� � ���)
then ����� = Number of actions in the relaxed plan at ��
Else

� Generate a random positive integer �.
If ((� modulo �) == 0), then
����� = Number of actions in the relaxed plan at ��
Else
����� � ���� � �

�

�
5. For (� � � to �) � If ((�� was evaluated using relaxed plan heuris-
tic) � (����� �) � (����� was not adjusted in second phase)), then
����� = ����� + Total number of pairs of concurrent PAD-mutex

actions in the relaxed plan at �. �
6. For all � children of �, find
����� � �� � ����� � ��� �

�����
Æ�����

� � �����

7. Expand node in the fringe with lowest ��� value.

8. Go to 2 if no plan is found.
9. Return plan.

In the empirical comparison, we used version 2.3 of FF (with
default options) since domains TSP-2n and TSP-3 contain non-
invertible actions. We used default options of HSP-2. TSP-2n is a
traveling salesperson domain where the salesman must visit a set
of cities exactly once, except the relaxed cities. TSP-3 is a domain
where a salesman can visit a set of cities either by flying or driving.
The salesman can drive to a city at the most once. He/She can fly to
any city an unlimited number of times, if she/he has enough cash.
Cash can be found only at a small number of cities. a and t in table
1 respectively denote the number of actions in the plans found and
the solving time in cpu seconds. * denotes that the problem was not
solved in 20 cpu minutes.

Prob AWA*-AC HSP-2 FF
a t a t a t

tsp3-33 33 19.9 * * * *
tsp3-34 * * * * 35 16.1
tsp3-35 29 20.9 * * * *
tsp3-36 32 33.8 31 12.7 * *
tsp3-37 32 179.6 35 33.1 34 4.1
tsp3-40 29 10.2 * * * *
tsp2n-1 27 24.6 29 19.4 28 2.1
tsp2n-2 28 319.9 * * * *
tsp2n-4 27 35.9 * * * *
tsp2n-5 30 149.6 29 333.7 * *

tsp2n-16 32 184.4 34 500.4 32 2.2
tsp2n-19 32 175.9 32 33.4 * *

Table 1. AWA*-AC, HSP-2 and FF on TSP-3 and TSP-2n

We compared AWA*-AC-LE and AWA*-AC on 30 problems from
TSP-3 domain. AWA*-AC-LE solved 26 problems and AWA*-AC
solved 22 problems. AWA*-AC-LE solved 23 problems faster than
AWA*-AC. We did run the variants and planners AltAlt [6] and
STAN 4 [5] on some problems from TSP domains. The variants
were more efficient than these planners on these problems.

ACKNOWLEDGEMENTS
This work is funded by NSF grant IIS-0119630 to the second author.
REFERENCES
[1] B. Bonet and H. Geffner, Planning as Heuristic Search, AI Jour-
nal, Vol.129(1-2), June 2001, pp. 5-33.
[2] M. Do and S. Kambhampati, Sapa: A Domain-Independent
Heuristic Metric Temporal Planner, ECP proceedings, 2001, pp. 109-
120
[3] J. Hoffmann and B. Nebel, The FF Planning System: Fast Plan
Generation through heuristic search, Journal of Artificial Intelligence
Research, Vol. 14, 2001, pp. 253-302.
[4] Richard E. Korf and Ariel Felner, Disjoint pattern database
heuristics, Artificial Intelligence 134, 2002, pp. 9-22
[5] Maria Fox and Derek Long, STAN 4: A hybrid planning strategy
based on subproblem abstraction, AI Magazine 22(3), 2001, pp. 81-
84
[6] XuanLong Nguyen, Subbarao Kambhampati and Romeo Sanchez
Nigenda, Planning graph as the basis for deriving heuristics for
plan synthesis by state space and CSP search, Artificial Intelligence
135(1-2), 2002, pp. 73-123.

