
Configuration of Web Services as Parametric Design
Annette ten Teije 1 and Frank van Harmelen2 and Bob Wielinga3

Abstract. The configuration of composite Web services is partic-
ularly hard given the heterogeneous, unreliable and open nature of
the Web. Furthermore, such composite Web services are likely to be
complex services, that will require adaptation for each specific use.

We propose a knowledge-intensive brokering approach to the cre-
ation of composite Web services. In our approach, we describe a
complex Web service as a fixed template, which must be configured
for each specific use. Web service configuration can then be regarded
as parametric design, in which the parameters of the fixed template
have to be instantiated with appropriate component services. Dur-
ing the configuration process, we exploit detailed knowledge about
the template and the components, to obtain the required composite
web service. Our approach exploits the knowledge engineering liter-
ature, and in particular the problem solving methods work of the last
decade.

We illustrate our proposal by applying it to a specific family
of Web services, namely “classification services”. We have imple-
mented a prototype of our knowledge-intensive broker and describe
its execution in a concrete scenario.

1 INTRODUCTION

Web services have raised much interest in various areas of Computer
Science. In AI, the notion ofSemantic Web Serviceshas attracted
much attention. According to [3]: “Semantic Web services build on
Web service infrastructure to enable automatic discovery and invoca-
tion of existing services as well ascreation of new composite services
[...]”. In particular the configuration of Web services has gained at-
tention from AI researchers [7, 5]. This problem is particularly hard
given the heterogeneous, unreliable and open nature of the Web. Fur-
thermore, such composite Web services will be complex services,
that will require adaptation for each specific use.

Current approaches to Web service configuration are often based
on pre/post-condition-style reasoning. Given descriptions of elemen-
tary Web services, and the required functionality of the composite
Web service, they aim to try to construct a “plan” of how to compose
the elementary services in order to obtain the required functional-
ity. Planning techniques are heavily investigated for this purpose [6].
This problem of creation of new composite web services is in princi-
ple equal to the old problem of generalised automatic programming.
This problem is notoriously unsolved in general by any known tech-
niques. There is no reason to belief that the Web service version of
this problem will be any less resistant to a general solution.

In this paper, we propose instead aknowledge intensiveapproach
to the creation of composite Web services. We describe a complex
Web service as a fixed template, which must be configured for each
specific use. Web service configuration can then be regarded as para-
metric design, in which the parameters of the fixed template have to

1 Dept. of AI, Vrije Universiteit Amsterdam,annette@cs.vu.nl
2 Dept. of AI, Vrije Universiteit Amsterdam
3 Dept. of Social Science Informatics, SWI, University of Amsterdam

be instantiated with appropriate component services. During the con-
figuration process, we exploit detailed knowledge about the template
and the components, to obtain the required composite web service.

Whereas in other work the main metaphor is “Web service config-
uration = planning” (i.e. generalised reasoning based on only com-
ponent specifications), our approach is based on the metaphor “Web
service configuration = brokering” (i.e. reasoning with specialised
knowledge in a narrow domain). A planner is assumed to be “do-
main free”: it is supposed to work on any set of components, given
simply their descriptions. Abroker on the other hand exploits spe-
cific knowledge about the objects he is dealing with.

In the remainder of this paper, we describe how such a broker can
be equipped with configuration knowledge on how to combine these
web services.

We illustrate our proposal by applying it to a specific family of
Web services, namely “classification services”, and we describe a
specific implementation and execution of our approach.

Observations

Knowledge

Solutions

Legal
Observations

Scored
Observations

Aggregated
Scores

Candidate
Solutions

MicroMatch Aggregate

Admissibility

Check

Selection

Figure 1. Structure of classification services. The boxes with thick lines
are input and output. The ovals are the parameters of the template for the

family of classification services.

2 PARAMETRIC DESIGN

Parametric Designis a simplification of general configuration. Para-
metric Design assumes that the objects-to-be-configured all have the
same overall structure in the form of preconfigured templates. Varia-
tions on the configuration can only be obtained by choosing the val-
ues of given parameters within these templates.

Parametric Design requires that the object-to-be-designed (in our
case: a Web service) is described in terms of a fixed structure con-
taining parameters with adjustable values.
Question 1:can large classes of Web services be described in this
way? This question will be tackled in section 3.

An existing reasoning method for parametric design isPropose-
Critique-Modify, or PCM for short [2]. The PCM method consists of
four steps:
The propose stepgenerates an initial partial or complete configura-
tion. It proposes an instance of the general template used for repre-
senting the family of services.
The verify step checks if the proposed configuration satisfies the
required properties of the service. This checking can be done by both
pre/post-condition reasoning, or by running the service.
The critique step. If the verification step fails, the critique step anal-
yses the reasons for this failure: it indicates which parameters may
have to be revised in order to repair these failures.



The modify step determines alternative values for the parameters
identified by the critique step. After executing the modification step,
the PCM method continues again with a verify step. This loop is
repeated until all required properties of the service are satisfied.

The propose-critique-modify method for Parametric Design re-
quires specific types of configuration knowledge to drive the different
steps of the configuration process
Question 2:can this PCM-knowledge be identified for large classes
of Web services? This question will be tackled in section 3.

3 EXAMPLE: CLASSIFICATION SERVICES

We illustrate our proposal by applying it to aclassification services.
The common definition of classification is [8]: “Classification prob-
lems begin with data and identify classes as solutions. Knowledge is
used to match elements of the data space to corresponding elements
of the solutions space, whose elements are known in advance.” More
formally, classification uses knowledge to map observations (in the
form of 〈feature,value〉-pairs) to classes.

We address question 1 above: can classification services be de-
scribed in a single template? [4] does indeed present such a general
template (see fig. 1):

First the observations have to be verified whether they are le-
gal (Check). Each of these legal observations (〈feature,value〉-pairs)
have to be scored on how they contribute to every possible solution in
the solution space (MicroMatch). These individual scores are then ag-
gregated (Aggregate). These aggregated scores are the basis for deter-
mining the candidate solutions (Admissibility). A final step (Selection)
then selects among these candidate solutions the best final solutions.

This structure constitutes the overall template for classification
services. Each box from fig. 1 is one parameter to configure in this
fixed template. We have shown that such a template structure can
also be easily captured in current Web service description languages,
such as OWL-S [1].

We give some example values of one of the parameters (more ex-
amples can be found in [9]):
Example values of theAdmissibility parameter:
(These are all taken from [8]).
• weak-coverage: Each〈feature,value〉 pair in the observations has
to be consistent with the feature specifications of the solution.
• strong-coverage: These are weak-coverage solutions with no unex-
plained features.
• explanative: These are weak-coverage solutions for which no fea-
ture specifications are missing.

Such parameter instances can also be described in current Web
service description languages (e.g. OWL-S).

The question still remains if it is possible to identify the knowl-
edge required for the propose-critique-modify method and each of
its four steps (i.e. question 2) We show that this is indeed the case,
by giving parts of the PCM knowledge required to configure classifi-
cation services. (Again, more examples in [9]).
Example Propose knowledge for theAdmissibility parameter:
• if many 〈feature,value〉 pairs are irrelevant, then do not use
strong-coverage (becausestrong-coverage insists on an explanation
for all observed features, including the irrelevant ones).
Example Critique knowledge for theSelection parameter:
• When the solution set is too small (e.g. empty) or too large (e.g.
> 1), then adjust theAdmissibility or theSelection parameter.
Example Modify knowledge for theAdmissibility parameter:
• If the solution set has to increased (reduced) in size, then the
value for theAdmissibility parameter has to be moved down (up) in
the following partial ordering:weak-coverage ≺ strong-coverage ≺
strong-explanative.

4 AN EXAMPLE SCENARIO

To test our brokering approach to Web service composition, we have
configured the classification services needed to support Programme
Chairs of major scientific conferences.

In our experiment, we have emulated the paper-classification pro-
cess for the ECAI 2002 conference. There were 605 submissions to
ECAI 2002, each characterised by a set of author-supplied keywords,
i.e. each keyword is a〈feature,value〉-pair with value either 0 (key-
word absent) or 1 (present). In total, 1990 keywords were given by
authors. These had to be mapped onto 88 classes: 15 broad classes
which were further subdivided into 73 more specific classes. Of the
650 papers, 189 were classified by hand by the Programme Chair.
These classifications can be considered as a golden standard.
Requirement 1: The classification service must classify each paper
in at least one of the 15 major categories
Requirement 2: The service must reproduce the Chair’s solution on
the 189 handclassified papers.

Important characteristics of this domain are that:
Characteristic 1: the feature-values are often noisy (authors choose
remarkably bad keywords to characterise their paper), and
Characteristic 2: it is hard to determine in advance what the re-
quired classification mechanism should be. Requiring all keywords
of a paper to belong to a solution class might be too strict, resulting
in many unclassified papers, and violating requirement 1. But requir-
ing only a single keyword to appear might well be too liberal, causing
violation of requirement 2. These characteristics ensure that this do-
main requires dynamic configuration of the classification process.

The iterative service-configuration process performed by our PCM
broker is summarised in the table below:

Iteration Answers Golden Standard Modification
1 0 (0%) 0 (0%) Admissibility
2 93 (15%) 16 (8%) Admissibility
3 595 (98%) 81 (45%) Selection
4 595 (98%) 103 (54%) Selection
5 595 (98%) 145 (76%) Selection
6 595 (98%) 169 (89%)

After a repeated series of six of cycles, our broker arrives at a
configuration that sufficiently satisfies both requirements.

Acknowledgements:This research was partially supported by the European
Commission IBROW project (IST-1999-19005). We like to thank Enrico
Motta, Anjo Anjewierden, Guus Schreiber, Machiel Jansen, Marta Sabou.

REFERENCES
[1] A. Ankolekar, et al.: ‘DAML-S: Semantic markup for web services’, in

ISWC 2002, LNCS2342, pp. 348–363.
[2] D. Brown and B. Chandrasekaran, ‘Design problem solving: knowledge

structures and control strategies’,Research notes in AI, (1989).
[3] M. Kiefer. Message toswsl-committee@daml.org, May 14, 2003.
[4] E. Motta and W. Lu, ‘A library of components for classification problem

solving’, in Pacific Rim Knowledge Acquisition Workshop, (2000).
[5] S. Narayanan and S. Mcllraith, ‘Simulation, verification and automated

composition of web services.’, inWWW 2002.
[6] M. Sheshagiri, M. desJardins, and T. Finin, ‘A planner for composing

service described in DAML-S’, inWorkshop on Planning for Web Ser-
vices, at ICAPS 2003.

[7] E. Sirin, J. Hendler, and B. Parsia, ‘Semi-automatic composition of web
services using semantic descriptions’, inWeb Services: Modeling, Ar-
chitecture and Infrastructure workshop at ICEIS2003.

[8] M. Stefik, Introduction to knowledge systems, Morgan Kaufmann,
1995.

[9] A. ten Teije and F. van Harmelen. IBROW deliverable wp4.1 & 4.2:
Task & method adaptation, jan 2003.


