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Abstract. The task of eliciting all probabilities required for a
Bayesian network can be supported by first acquiring qualitative con-
straints on the numerical quantities to be obtained. Building upon the
concept of qualitative influence, we analyse such constraints and de-
fine a small number of influence classes. Based upon these classes,
we present a method for efficiently acquiring the qualitative con-
straints that should be satisfied by the network’s probabilities.

1 INTRODUCTION

Bayesian networks for real-life applications are often constructed
with the help of domain experts. A Bayesian network is a concise
representation of a probability distribution that consists of a graph-
ical part, encoding the relevant variables of the domain along with
their probabilistic interrelationships, and a numerical part, encoding
the conditional probabilities that represent the strengths of these re-
lationships. Experience shows that, although it may require consider-
able effort, configuring the graphical part of a network is quite prac-
ticable. In fact, well-known knowledge-engineering techniques for
designing domain models can to some extent be employed for this
task [1]. Obtaining the probabilities for the numerical part of the net-
work, however, is generally considered a far harder task, especially
if these probabilities have to be assessed by domain experts [2].

Recently, a methodology for building Bayesian networks has been
introduced in which the specification of qualitative influences has
been proposed as an intermediate step in the construction of a net-
work’s numerical part [3]. These influences then are taken as con-
straints on the probabilities to be obtained. In this paper, we further
elaborate on this idea. We study the different orderings of the prob-
abilities to be specified for a variable and its causes, and show that
these orderings give rise to different combinations of influences. We
then define a small number of classes of influences.

Now, upon building a Bayesian network, a combination of quali-
tative influences has to be specified for each variable and its causes.
We present a method for acquiring knowledge for this purpose from
domain experts. The method builds upon the idea of establishing,
for each variable, the appropriate influence class. From just a partial
ordering of the probabilities involved, some of the classes and the
associated combination of influences can be identified uniquely; for
the other classes, additional knowledge has to be acquired before the
combination of influences is fully specified. The classes thus serve to
guide the knowledge engineer in her acquisition efforts. Preliminary
results of the use of our method in a real-life application domain have
demonstrated its practicability.
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2 PRELIMINARIES

A Bayesian network is a model of a joint probability distribution,
consisting of a graphical part and an associated numerical part. The
graphical part is an acyclic digraph, in which each node A represents
a statistical variable. For ease of exposition, we assume all variables
to be binary, taking one of the values true and false; we use a to
denote A = true and ā to denote A = false. We further assume that
a variable’s values are ordered, where true > false. The arcs in the
digraph model the probabilistic influences between the represented
variables. Informally speaking, an arc B → C between the nodes B

and C indicates a direct influence between the associated variables;
B then is referred to as the cause of the effect C. The variable C with
all its possible causes constitute a causal mechanism, an example
of which is shown in Figure 1. Associated with the digraph of the
network are numerical quantities. With each variable C is associated
a set of conditional probability distributions Pr(C | π(C)); each of
these distributions describes the joint effect of a specific combination
of values for the causes π(C) of C, on the probabilities of C’s values.
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Figure 1. A basic causal mechanism

A qualitative influence between two variables expresses how ob-
serving a value for the one variable affects the probabilities for the
other variable [4]. For example, a positive qualitative influence of a
variable B on a variable C along an arc B → C expresses that ob-
serving a higher value for B makes the higher value of C more likely,
regardless of any other direct influences on C, that is,

Pr(c | bx)− Pr(c | b̄x) ≥ 0

for any combination of values x for the set π(C) \ {B}. The in-
fluence is denoted S+(B,C), where the ‘+’ is termed the sign of
the influence. A negative qualitative influence, denoted by S−, and
a zero qualitative influence, denoted by S0, are defined analogously,
replacing the inequality ≥ in the formula above by ≤ and =, respec-
tively. If the influence of B on C is positive for one combination of
values x and negative for another combination, then the influence is
called ambiguous and has associated the sign ‘?’.

3 CLASSES OF INFLUENCES

Different combinations of influences may hold for a causal mecha-
nism. For reasons of space, we focus in this paper on mechanisms



with two causes only, as exemplified in Figure 1. For the effect C

of the basic causal mechanism, the four conditional probabilities
Pr(c | ab), Pr(c | āb), Pr(c | ab̄) and Pr(c | āb̄) are required.
For these probabilities, there are 24 possible orderings, each of which
gives rise to a specific combination of influences. We now define four
different classes of combinations of influences.

Class I is based upon the eight orderings of the probabilities under
study in which the presence of the common effect is less likely in the
situations in which just one of the two causes is present than in the
two situations where both causes are either present or absent:

{Pr(c | ab), Pr(c | āb̄)} ≥ {Pr(c | āb), Pr(c | ab̄)}
{Pr(c | ab), Pr(c | āb̄)} ≤ {Pr(c | āb), Pr(c | ab̄)}

The notation {p, q} in the orderings above is used to indicate that
p and q are ordered arbitrarily. For the four orderings that involve
the inequality ≥, we find that S?(A, C) and S?(B, C). Since Pr(c |
ab) ≥ Pr(c | āb) and yet Pr(c | ab̄) ≤ Pr(c | āb̄), we have that
the sign of the influence of A on C depends on the value of the other
cause of C: with B = true, the influence of A on C is positive;
with B = false, it is negative. The overall influence of A on C,
therefore, is ambiguous. A similar observation holds for the influence
of B on C. For the four orderings that involve the inequality ≤, we
equally find that S?(A, C) and S?(B, C). Class I thus captures the
combination of two ambiguous influences.

Class II is based upon the four orderings of the probabilities under
study in which the presence of the effect is more likely in the situa-
tions in which just one of the causes is present than in the situation
in which both causes are absent, yet less likely than in the situation
in which both causes are present:

Pr(c | ab) ≥ {Pr(c | āb), Pr(c | ab̄)} ≥ Pr(c | āb̄)
Pr(c | ab) ≤ {Pr(c | āb), Pr(c | ab̄)} ≤ Pr(c | āb̄)

For the two orderings that involve the inequality ≥, we find that
S+(A,C) and S+(B,C). Since Pr(c | ab) ≥ Pr(c | āb) and
Pr(c | ab̄) ≥ Pr(c | āb̄), we have that the influence of A on C

is positive regardless of the value of B. The influence of A on C,
therefore, is positive. A similar observation holds for the influence of
B on C. For the two orderings that involve the inequality ≤, we find
that S−(A, C) and S−(B, C). Class II thus captures the combina-
tion of two influences with the same unambiguous sign.

Class III is based upon the four orderings of the probabilities under
study in which the presence of the common effect is more likely in
the two situations in which both causes are either present or absent
than in the situation in which just the one cause is present, yet less
likely than in the situation in which just the other cause is present:

Pr(c | āb) ≥ {Pr(c | ab),Pr(c | āb̄)} ≥ Pr(c | ab̄)
Pr(c | āb) ≤ {Pr(c | ab),Pr(c | āb̄)} ≤ Pr(c | ab̄)

For the two orderings that involve the inequality ≥, we find that
S−(A, C) and S+(B, C). For the other two orderings, we find that
S+(A,C) and S−(B, C). Class III thus captures the combination
of two influences with opposite unambiguous signs.

Class IV, to conclude, is based upon the eight orderings in which
the probabilities of the effect c given the same observations for the
two possible causes are interleaved in the ordering with the probabil-
ities of c given opposite observations for the two causes. An example
of such an ordering is:

Pr(c | ab) ≥ Pr(c | āb) ≥ Pr(c | āb̄) ≥ Pr(c | ab̄)

For all eight orderings involved, we find that S?(V, C) for some
V ∈ {A, B} and that Sδ(W,C) for some δ ∈ {+,−, 0} and
W ∈ {A, B} with W 6= V . In the ordering mentioned above,
for example, we have that Pr(c | ab) ≥ Pr(c | āb) and yet
Pr(c | ab̄) ≤ Pr(c | āb̄). We conclude that the influence of A

on C is ambiguous. We further observe that Pr(c | ab) ≥ Pr(c | ab̄)
and Pr(c | āb) ≥ Pr(c | āb̄). The influence of B on C is therefore
positive. Class IV thus captures an ambiguous influence of one of the
causes and an unambiguous influence of the other cause.

4 ACQUIRING INFLUENCES FROM EXPERTS

To specify probability constraints for a Bayesian network, combi-
nations of qualitative influences are to be established for all causal
mechanisms involved. We designed a method for acquiring the rele-
vant knowledge to this end, that builds upon the four classes of in-
fluences defined above. Our method begins by establishing the situ-
ations in which the presence of the effect is the most likely and the
least likely. If these situations indicate that the combination of influ-
ences for the mechanism under study belongs to one of the classes
II and III, then the partial ordering of probabilities obtained serves
to uniquely determine the signs of the influences involved: these can
simply be looked up and do not have to be acquired from the do-
main expert. If the combination of influences under study is found
to belong to one of the classes I and IV, then a total ordering of the
probabilities involved is obtained; once the total ordering is acquired,
the signs of the influences can again be looked up. Note that by thus
building upon the orderings of probabilities, we circumvent any mis-
interpretation of the concept of influence by the experts.

5 CONCLUDING OBSERVATIONS

We designed a method for acquiring qualitative influences to be used
as constraints on the probabilities for a Bayesian network. For this
purpose, we studied the different orderings of the probabilities to be
specified for a causal mechanism and, based upon these orderings,
defined a small number of classes of influences. Our method now
builds upon the observation that from just a partial ordering of the
probabilities involved, the influence class of a causal mechanism can
often be derived, thereby uniquely defining the signs of the influences
involved. We conducted an initial study of the use of (an extended
version of) our method with an intensive-care neonatologist to ac-
quire probability constraints for a small part of a real-life Bayesian
network under construction [5]. The preliminary results indicate that
the method takes relatively little effort on the part of the expert.
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