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Abstract. This paper constructs a logic of soft constraints where
the set of degrees of preference forms a partially ordered set. When
the partially ordered set is a distributive lattice, this reduces to the
idempotent semiring-based CSP approach, and the lattice operations
can be used to define a sound and complete proof theory. For the
general case, it is shown how sound and complete deduction can be
performed by using a particular embedding of a partially ordered set
in a distributive lattice.

1 INTRODUCTION

Representing and reasoning with an agent’s preferences is impor-
tant in many applications of constraints formalisms. Preferences are
often most naturally only partially ordered, reflecting an agent be-
ing unable or unwilling to order certain choices, or wishing to delay
making such an ordering decision. Most soft constraints formalisms
assume a total order on the degrees of preference. On the other hand,
the elegant and general semiring-based CSP framework [1, 2] does
allow a partially ordered set of preference degrees, but this partially
ordered set must form a distributive lattice; whilst this is convenient
computationally, it restricts the representational power. This paper
constructs a logic of soft constraints where it is only assumed that the
set of preference degrees is a partially ordered set, with a maximum
element1 and a minimum element0. A soft constraint assigns a pref-
erence degree to a tuple, which is interpreted as an upper bound for
the overall preference degree of the tuple. When the partially ordered
set is a distributive lattice, this reduces to the idempotent semiring-
based CSP approach, and the lattice operations can be used to define
a sound and complete proof theory, as shown in section 2.2. This case
can also be viewed as a lattice-valued possibilistic logic [3], as shown
in [6]. In section 2.3 the generally partially ordered case is consid-
ered. It is shown how a particular embedding of a partially ordered
set in a distributive lattice allows sound and complete deduction to be
performed in the general case, by using deduction in the distributive
lattice case.

This paper is a condensed version of [7], which is based on [6].

2 A LOGIC OF SOFT CONSTRAINTS

Let V be a finite set of variables, where each variableX ∈ V has
finite domainX. For U ⊆ V , defineU to be the set of possible
assignments to variablesU , that is,

∏
X∈U

X. A complete tuplex

is an element ofV . For U ⊆ V let x↓U be the projection ofx to
variablesU .

1 This work has received support from Science Foundation Ireland under
Grant 00/PI.1/C075

2 Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Cork, Ireland, n.wilson@4c.ucc.ie

The intention is to produce a formalism that allows degrees of
preference (or satisfaction, or adequacy) for partial tuples. So we
choose a finite partially ordered setA = (A,�, 0, 1) to represent
these degrees, whereA contains a maximum element1 and a mini-
mum element0. Define anA-constraintc to be a function fromVc

to A, for some set of variablesVc ⊆ V . A value of0 means that the
tuple is least preferred, a value of1 expresses no information.

2.1 Semantics

We would like to say whatA-constraintsd can be deduced from a
set ofA-constraintsC. We imagine that there exists some (unknown)
function fromV to A which gives the ‘true’ degree of preference (of
e.g., a user) of each complete tuplex ∈ V . Constraintc is understood
as giving upper bounds on the degrees of preference; we say, for
functionM : V → A, thatM satisfiesc (written: M |= c) if and
only if for all x ∈ V , M(x) � c(x↓Vc). For set ofA-constraints
C andA-constraintd we defineC |= d if and only if everyM
satisfying (every constraint in)C also satisfiesd. Soft constraintsC
express information about the preferences (of e.g., a user), and so
such ad expresses derived preference information, which may be
thought of as a property of the (user’s) preferences.

The semantic definition is not very helpful for computing the con-
sequencesd of C; we need some more computationally useful char-
acterisation. To do this end we consider a special case first.

2.2 The case whenA is a distributive lattice

We first look at this special case of a partial order. For finiteA,
(A, 0, 1,�) is a distributive lattice if and only if anyα, β ∈ A
have a greatest lower boundα ∧ β in A (so thatγ � α, β implies
γ � α ∧ β � α, β), and a least upper boundα ∨ β in A (so that
α, β � γ impliesα, β � α∨β � γ), which satisfy the distributivity
property: for allα, β, γ ∈ A, γ ∧ (α ∨ β) = (γ ∧ α) ∨ (γ ∧ β).

The lattice properties enable us to define combination and projec-
tion ofA-constraints. Letc : Vc → A andd : Vd → A be twoA-
constraints. Their combinationc∧ d is theA-constraint on variables
Vc ∪Vd given by, fory ∈ Vc ∪ Vd, (c∧d)(y) = c(y↓Vc)∧d(y↓Vd).
For U ⊆ Vc, c↓U , the projection ofc to U , is given by: foru ∈ U ,
c↓U (u) =

∨
{c(y) : y ∈ Vc, y

↓U = u}. 1U is the constraint on vari-
ablesU which is everywhere equal to1: for all u ∈ U , 1U (u) = 1.

A simple sound and complete proof theory can be defined using
these operations. Define the proof theory by the axiom1V and infer-
ence rules:

— From c andd deducec ∧ d.
— For each constraintc andU ⊆ Vc the following inference rule:

From c deducec↓U .
— WhenVc = Vd andc � d (i.e., for all y ∈ Vc, c(y) � d(y)):

From c deduced.



Theorem 1 (Soundness and Completeness)C |= d if and only if
(
∧

C ∧1Vd)↓Vd � d if and only ifd can be proved fromC using the
axiom and inference rules.

An important derived inference rule is elimination of a variable:
For variableX ∈ V , combine all constraints involving that variable
and project toU − {X}, whereU is the set of variables involved in
the combination. In fact [6, 7] this can be used as a complete proof
procedure, which is efficient if a good hypertree/join tree decompo-
sition can be found [5, 4].

The formalism defined in 2.1 and 2.2 is strongly related to
semiring-based CSPs (Bistarelli et al, 97) [1]; as we showed in [6],
the notion of consequence defined above is the same as the natural
notion of consequence in idempotent semiring-based CSPs. So we
have a new and, in a certain sense, deeper, semantics for idempotent
semiring-based CSPs. The previous semantics [2] treats the opera-
tions of multiplication∧ and addition∨ as primitives, and defines
the semantics in terms of them. The strength of this new semantics
is that it assumes so little: essentially the whole system follows from
saying that the constraints express upper bounds on preference de-
grees for complete assignments [7].

2.3 The General Partially Ordered Set Case

Here we consider the general case, whereA = (A, 0, 1,�) is an
arbitrary partially ordered set that has a minimum element0 and a
maximum element1. This is important because we cannot in general
expect a set of partially ordered preference degrees to form a dis-
tributive lattice. Our approach is to embed the partially ordered set
in a lattice of subsets in such a way that the ordering information is
maintained, but without adding any extra ordering information. Then
we can use the proof procedures for the subset lattice case to make
deductions for this general case. The following proposition gives suf-
ficient conditions on an embeddingQ for this to work.

Proposition 1 Let Θ be a finite set and letQ be a function fromA
to 2Θ satisfying (i)α � β ⇐⇒ Q(α) ⊆ Q(β), and (ii) for any
B ⊆ A andθ ∈

⋂
β∈B

Q(β), there existsα ∈ A with θ ∈ Q(α) ⊆⋂
β∈B

Q(β). For eachc : Vc → A definecQ : Vc → 2Θ to bec

followed byQ, so thatcQ(y) = Q(c(y)).
Let C be a set ofA-constraints, and defineCQ to be

{cQ : c ∈ C}. ThenC |= d if and only ifCQ |= dQ.

It is easy to find an embedding with the appropriate proper-
ties. In particular we can defineΘ to be A and Q(α) to be
{β ∈ A : β � α} (see below). However, ifA is large, working with
subsets ofA can be computationally expensive. We give a way of
constructing an embedding which can lead to much smallerΘ than
A. We will consider embeddings of a particular form. LetA′ be a
subset ofA. Forα ∈ A let QA′(α) be the set{α′ ∈ A′ : α′ � α}.
It can easily be seen that for anyA′, the mappingα 7→ QA′(α)
satisfies (ii) above (usingα = θ), and half of (i): if α � β then
QA′(α) ⊆ QA′(β), (by transitivity of�). SettingA′ = A − {0}
we get the other half of (i): ifQA′(α) ⊆ QA′(β) thenα � β. How-
ever, we can very often find a much smallerA′ that still satisfies both
conditions (i) and (ii) of the proposition, as shown below.

Construction of a particularA′

For B ⊆ A define relations�B by α �B β if and only if γ �
β for all γ ∈ B such thatγ � α, i.e., if and only ifQB(α) ⊆

QB(β). These relations contain�, and are monotonic (decreasing)
with respect toB: if B′ ⊆ B then�B′ ⊇ �B ⊇ �, so thatα � β
impliesα �B β, which impliesα �B′ β.

Let m = |A|−1. We list the elements ofA in an order compatible
with �, starting with0, so thatα0 = 0, and ifαi � αj theni ≤ j.
We build upA′, element by element, with the final setA′ beingAm.

Define A0 = ∅, and for i = 1, . . . , m, defineYi, Zi and Ai

inductively as follows:

— setYi = {αi} if there existsk < i with αi �Ai−1 αk; otherwise
setYi = ∅;

— setZi to be the set of allαj such that (a)j < i, (b) αj 6� αi, and
(c) αj �Ai−1 αi;

— let Ai = Ai−1 ∪ Yi ∪ Zi

(AddingYi ensures thatαi 6�Ai αk and henceαi 6�A′ αk for k > i;
addingZi ensures thatαj 6�Ai αi, and henceαj 6�A′ αi, if j < i
andαj 6� αi.)

Finally, we letA′ = Am, and defineQ = QA′ , i.e., for each
α ∈ A, Q(α) = {β ∈ A′ : β � α}.

Theorem 2 With the above definition ofA′ andQ, the relations�
and�A′ are the same, and for allα, β ∈ A, α � β if and only if
Q(α) ⊆ Q(β). Furthermore,C |= d if and only ifCQ |= dQ.

The purpose of the construction is to produce an embedding into
not too large a set. In the worst case, when� is a total order, the set
A′ is justA− {0}, so|A′| = |A| − 1. The other extreme is whenA
is the lattice of all subsets of a setΩ. ThenA′ is the set of singleton
subsets ofΩ so|A′| = |Ω| = log2 |A|.

This theorem gives us a sound and complete method for determin-
ing if inferences of the formC |= d hold (for generalA-constraints):
we constructA′ andQ as defined above, convert theA-constraints
into2A

′
-constraints, and use the machinery provided for the distribu-

tive lattice case (Theorem 1, and in particular, the variable elimina-
tion inference rule) to determine ifCQ |= dQ. This procedure will be
efficient if the partially ordered set is not too large, given appropriate
structure on the constraints’ variables.
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