
NGP: Numerical Graph Planning
Joseph Zalaket and Guy Camilleri 1

Abstract. Planning systems such as FF-Metric [3] and SAPA [2]
are able to deal with numerical knowledge to solve resources con-
straints added to the symbolic planning domain. This paper presents
the NGP (Numerical Graph Planning) that is able to solve totally nu-
merical and/or symbolic planning domains. We propose a new action
representation to support numerical conditions and effects, where
we allow a non-restricted function application for numerical update.
NGP guides its search using a heuristic derived uniformly for numer-
ical and symbolic knowledge.

1 Introduction

Most of the real world problems involve numerical handling. Plan-
ning systems like FF-Metric [3] and SAPA [2] are able to handle
numerical resources, but in most cases the resources are only used as
auxiliary constraints added to the symbolic planning domain. How-
ever, real world problems require a more complicated numerical
treatment. To manipulate a robot in a non flat territory or in the space
there is need to support trigonometric functions. Similarly, functions
are needed to plan the deployment of an army in different zones of
the world. These types of problems need a totally numerical handling
and they are normally solved by mathematical approaches. This pa-
per presents the NGP planner and propose a method to handle dis-
crete numerical quantities, as well as numerical goals in planning.
NGP extends the representational ability of the classical planning
graph of GraphPlan [1] by introducing an approach to multi-valued
the planning graph facts to keep trace of the update functions effects.
This multi-valued approach allows keeping real value levels for nu-
merical knowledge, which allows the calculation of a uniform heuris-
tic for mixture of numeric and symbolic facts. NGP uses on-the-fly
actions instantiation to deduce the appropriate numerical actions ar-
guments during the search process.
In the second section we present the domain modeling extension.
The actions instantiation and the numerical objects handling are de-
scribed in the third section. In the fourth section we present the
heuristic derivation for NGP and its main search mechanism, before
ending with the conclusion.

2 Language

The language used in NGP is a slightly modified subset of PDDL2.1
language. The main extension to PDDL2.1 is the introduction of the
update functions to handle the numerical knowledge. This extension
allows the use of mathematical functions (like COS, SIN, SQRT,. . .)
and user defined functions. The control flow (conditional statements
and loops) can be used within an update function to hold up complex
numerical computation.

1 IRIT CCI-CSC, Universit́e Paul Sabatier, 118 route de Narbonne, 31062
Toulouse Cedex 4, FRANCE. email:{zalaket, camiller}@irit.fr

2.1 Domain representation.

A planning domain is represented by a tuple
D=(X, C, Fp, Rp, Fu, Rc) where: X is the set of variables,C
is the set of constant symbols,Fp is the set of functional symbols,
Rp is the set of relational symbols,Fu is the set of update functions
symbols andRc={=, 6=, <, 6, >, >} is the set of comparators.

. If x ∈ X⇒ x is a term. A term could be a domain object as block
A,B,. . . or a constant value as 1,2,. . . .

. If c ∈ C⇒ c is a term.

. If fp ∈ Fp with arity j, and t1, t2, . . . , tj are terms⇒
fp(t1, t2, ..., tj) is a term.We note byN the set of the numeri-
cal state variables of the domain, for t1, t2, . . . , tj ∈ C.

. If r ∈ Rp with arity i, and t1, t2, . . . , ti are terms⇒
r(t1, t2, ..., ti) is a literal.We note byP the set of the literals of
the domain, for t1, t2, . . . , ti ∈ C.

. If fu ∈ Fu with arity n and l1, l2, . . . , ln ∈ P ∪ N are argu-
ments offu, such thatli ∈ N and li ← fu(l1, l2, . . . , ln) ⇒
fu(l1, l2, . . . , ln) is an update function assigned to the numerical
state variableli. We note byF the set of the update functions of
the domain.

2.2 Problem definition

A planning problem is defined as a tupleP=(I,O,G,D) where:I is
the initial state,O is the set of operators defined on the domainD
andG is the set of goal satisfaction conditions.

i. I ∈ S(the state space) such that:S={(α, β)/α ∈ P, β : N → R}

ii. An operator o∈ O is represented by the 5-tuple (CON, PRE,
ADD, DEL, UPD) where:

CON is the constraints list. The constraints are tested before
the action instantiation to avoid instantiation for inconsistent argu-
ments. A constraintcn ∈ CON is a triplecn = (t, r, t′) where:
the termt ∈ X, r ∈ Rc andt′ ∈ X∪ C.

PRE = PREP ∪ PREN is the list of preconditions.
PREP ⊆ P are propositional preconditions.
PREN are numerical (functional) preconditions, a precon-

dition pN ∈ PREN is a triple pN =(v, r, s) wherev ∈ N , r ∈ Rc

ands is a term (s ∈ X∪ C∪N).
ADD, DEL ⊆ P are respectively the list of propositional

additions and the list of propositional deletions.
UPD is the list of update, made up of numerical state

variables assigned to update functions.u ∈ UPD is a triple
u = (v, ass, f) wherev ∈ N , ass = {:=} is the assignment
andf ∈ F .

iii. G is the set of conditions satisfying the goal made up by proposi-
tional and numerical conditions (like the PRE list in (ii)).

3 Action Model

In a numerical planning problem many world objects are not explic-
itly defined but could be retrieved from the domain.
Definition-1: A variable objectvo ∈ N is a function that implic-
itly represents zero or one or several world objectsoi ∈ C. Each
time an update is applied to the variablevo, this variable takes a new
value, and by consequence a new implicit world object is added to
(or deleted from) the state space.
Transforming variable objects in a domain into explicit world objects
consists of finding out the objects added (or deleted) progressively
from the state space each time a numerical update takes place. In
a propositional state space, the actions should be instantiated from
the outset as compared to all the world objects in a total order plan-
ning process. By contrast in a numerical state space, actions instan-
tiation could be increasingly accomplished each time a numerical
effect ”UPD set” is applied.
Definition-2: A numerical state variablev ∈ N assigned to an up-
date functionf ∈ F is an implicit parameter of the action having
v := f in its UPD list.
Lemma-1: A variable objectvo ∈ N is an implicit action parameter
of (a) certain action(s).
A variable object is assigned to an update function of one (or several)
action(s), and thus it is an implicit action parameter of this (or these)
action(s) according to definition-2.
Definition-3: Any numerical state variablel ∈ N belonging to the
arguments of an update functionf ∈ F is an implicit action param-
eter of the action havingv := f in its UPD list, such thatv ∈ N .
This approach compared to the symbolic representation has the ad-
vantage of instantiating only what is needed as actions for problem
resolving. Some partial order planning systems use the least commit-
ment to avoid instantiating actions from the outset. In NGP actions
are instantiated progressively during the planning process.
As the use of functions and numerical handling makes the planning
process undecidable, we have added a lower limit and an upper limit
for each numerical type. For non-monotone functions we have added
a step variationε to approximately match the calculated number with
the upper or lower bounds limits.

4 NGP planner

The main search algorithm of the NGP planner is a variation of hill-
climbing algorithm guided by a heuristich derived from a relaxed
planning graph. If the hill-climbing fails to find a solution, then an
A* search algorithm takes place.
The NGP heuristic is calculated for each new state in the search space
and it is based on the planning graph of GraphPlan-Style [1]. The use
of the planning graph gives the possibility of non-restricting the up-
date functions included in numerical effects (UPD list), as update
functions are only executed in forward pass, also conditional up-
date could be included in update functions. Consequently, the update
functions could be one-way functions (non inversible or non bijec-
tive). Applying the Update list of an action leads to add the original
version of the concerned facts (original values before update) to the
Del list, then to add the updated version of these facts (new values
after update) to the Add list. With this graph structure we can manage
the propositional facts and the numerical ones in an identical way in-
stead of calculating two different heuristics as is the case of the most
of other planners treating numerical knowledge [3], [2]. In NGP we
use the STAN [5] datastructure for an explicit graph construction.
The construction of the relaxed graph is done as follows:

Given a state S, the graph is built from S by applying the relaxed
actions whose preconditions hold in S. An action is relaxed by ig-
noring its delete list, and by applying its update list as if it adds new
state variables values. The actions application leads to a second fact
layer in the graph, which contains all the facts added to the graph by
applying the ADD list and the UPD list of the actions. As in Graph-
Plan we add ”noop” actions to include the facts of fact-layer i-1 into
the fact-layer i. This transforms the numerical state variables in the
graph into multi-valued state variables to include values of previous
layers. Again relaxed applicable actions are applied and so on, until
we reach a fact-layer that contains all goals or until a fix point in the
graph is reached. In the latter case the returned heuristic is infinite
as we consider that there is no solution. In the former case a relaxed
plan extraction process should take place to calculate the heuristic
value. The resulting relaxed graph consists of a bi-layered graph,
fact-layers and action-layers. A fact-layer consists of two types of
facts: the propositional facts and the numerical facts. The numerical
facts are multi-valued in the graph, in a way that every time an up-
date aims to change the value of a numerical fact (state variable), this
change is added as a new value to the fact.
Once the graph is constructed up to the goals, we can extract the re-
laxed plan. Each goal in the final fact layer (the layer that contains all
goals), is replaced by the preconditions of the best action that adds
it from the previews layer, in its turn the action is added to the list
of relaxed plan. These preconditions become the goals of the current
layer, and the process continues backward until reaching the initial
layer. The length of the resulting extracted relaxed plan constitutes
the heuristich. h =

∑finallayer−1
i=0 |Oi| where [O0 ,..,Ofinallayer-1] is

the relaxed plan ([4]).

5 Conclusion

We have presented an ongoing work of a domain independent
planning system able to solve numerical and symbolic domains or a
combination of both. We have proposed a new action representation
where the numerical effects are separated from the propositional
ones and they can be developed by non-restricted update functions.
We have also added a constraint list to the action definition, which
serves to avoid useless actions instantiations. Our main objective in
the presented work was to allow the definition of domains closer
to the real world, where objects are not obligatory symbolic as for
STRIPS, but they also can be retrieved from numerical functions.
NGP is implemented in Java. The current implementation is used
to test the capacity of NGP to deal with numerical domains. Some
tests have been done on problems like the ferry (numerical version),
the Water Jug , the manufacturing and the army deployment domains.

REFERENCES
[1] Avrim L. Blum and Merrick L. Furst, ‘Fast planning through planning

graph analysis’,Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI95), 1636–1642, (1995).

[2] Minh B. Do and Subbarao Kambhampati, ‘Sapa: A domain-independent
heuristic metric temporel planner’,In Proceedings of the European Con-
ference on Planning, (2001).

[3] J. Hoffmann, ‘Extending FF to numerical state variables’,In Proceedings
of the 15th European Conference on Artificial Intelligence, Lyon, France,
(2002).

[4] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan genera-
tion through heuristic search’,Artificial Intelligence Research, 14, 253–
302, (2001).

[5] D. Long and M. Fox, ‘Efficient implementation of the plan graph in
STAN’, Journal of Artificial Intelligence Research, 10, 87–115, (1999).

